

US009203794B2

(12) United States Patent

Appelman et al.

(54) SYSTEMS AND METHODS FOR RECONFIGURING ELECTRONIC MESSAGES

(75) Inventors: **Barry Appelman**, McLean, VA (US); **Muhammad Mohsin Hussain**,

Mountain View, CA (US)

(73) Assignee: FACEBOOK, INC., Menlo Park, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 13/617,350

(22) Filed: **Sep. 14, 2012**

(65) **Prior Publication Data**

US 2013/0097256 A1 Apr. 18, 2013

Related U.S. Application Data

- (63) Continuation of application No. 13/189,972, filed on Jul. 25, 2011, which is a continuation of application No. 12/626,099, filed on Nov. 25, 2009, now Pat. No. 8,001,199, which is a continuation of application No. 10/715,206, filed on Nov. 18, 2003, now Pat. No. 7,640,306.
- (60) Provisional application No. 60/428,234, filed on Nov. 22, 2002, provisional application No. 60/426,806, filed on Nov. 18, 2002.

(51)	Int. Cl.	
	G06F 15/16	(2006.01)
	H04L 12/58	(2006.01)
	G06F 9/54	(2006.01)
	G06Q 10/10	(2012.01)
	G06Q 30/02	(2012.01)
	G06Q 30/08	(2012.01)

(52) U.S. Cl.

CPC *H04L 51/24* (2013.01); *G06F 9/54* (2013.01); *G06F 9/542* (2013.01); *G06Q 10/10* (2013.01); *G06Q 30/02* (2013.01); *G06Q 30/08* (2013.01);

(10) Patent No.: US 9,203,794 B2 (45) Date of Patent: Dec. 1, 2015

H04L 51/04 (2013.01); **H04L 51/043** (2013.01); **H04L 51/06** (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

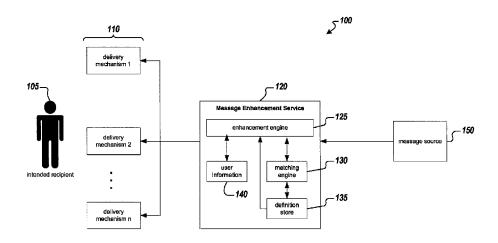
4,028,496 A 4,650,927 A 6/1977 LaMarche et al. 3/1987 James (Continued)

FOREIGN PATENT DOCUMENTS

EP 0889660 1/1999 EP 0921666 9/1999

(Continued)

OTHER PUBLICATIONS


U.S. Appl. No. 10/715,213, filed Nov. 18, 2003, Schlegel. (Continued)

Primary Examiner — John B Walsh (74) Attorney, Agent, or Firm — Keller Jolley Preece

(57) ABSTRACT

An electronic message may be reconfigured to effect an enhanced notification using an input interface to receive at least one electronic message created by or on behalf of a message source for delivery to an intended recipient. A matching engine determines whether the electronic message corresponds to a predetermined definition of an enhanced notification. An enhancement engine reconfigures the electronic message to the enhanced notification if stored information related to the intended recipient indicates that the intended recipient is subscribed to receive the enhanced notification. Reconfiguring the electronic message may include reconfiguring the message to provide special handling, routing or presentation.

51 Claims, 10 Drawing Sheets

US 9,203,794 B2 Page 2

(56)		Referen	ces Cited	5,812,865 A		Theimer et al.
	HC D	ATENT	DOCUMENTS	5,819,084 A 5,825,771 A	10/1998 10/1998	Shapiro et al. Cohen et al.
	U.S. P.	ALENI	DOCUMENTS	5,826,025 A		Gramlich
4,700,392	Α	10/1987	Kato et al.	5,835,089 A	11/1998	Skarbo et al.
4,817,129		3/1989		5,835,722 A	11/1998	Bradshaw et al.
4,837,798			Cohen et al.	5,835,905 A 5,845,073 A		Pirolli et al. Carlin et al.
4,975,657 5,008,853			Eastmond Bly et al.	5,845,300 A	12/1998	Comer et al.
5,003,833			Morten et al.	5,848,134 A	12/1998	Sekiguchi et al.
5,025,252			DeLuca et al.	5,864,684 A	1/1999	Nielsen
5,086,394			Shapira	5,864,874 A 5,867,162 A	1/1999 2/1999	
5,101,424 5,276,905			Clayto et al. Hurst et al.	5,870,744 A	2/1999	Sprague
5,315,636		5/1994		5,872,521 A	2/1999	Lopatukin et al.
5,329,619	A	7/1994	Page et al.	5,878,219 A	3/1999	Vance, Jr. et al.
5,351,235			Lahtinen	5,878,233 A 5,878,397 A	3/1999 3/1999	Schloss Stille et al.
5,425,028 5,428,778			Britton et al. Brookes	5,893,091 A	4/1999	Hunt et al.
5,436,960			Campana, Jr. et al.	5,893,099 A	4/1999	
5,438,611	A	8/1995	Campana, Jr. et al.	5,895,454 A		Harrington
5,440,551		8/1995		5,896,321 A 5,897,635 A	4/1999 4/1999	Miller et al. Torres et al.
5,448,566 5,448,567			Richter et al. Dighe et al.	5,903,726 A		Donovan et al.
5,459,458			Richardson et al.	5,913,032 A	6/1999	Schwartz et al.
5,479,472	A	12/1995	Campana, Jr. et al.	5,920,692 A	7/1999	Nguyen et al.
5,487,100		1/1996		5,933,477 A 5,938,725 A	8/1999 8/1999	
5,491,800 5,497,463			Goldsmith et al. Stein et al.	5,940,379 A	8/1999	Startup et al.
5,499,343		3/1996		5,940,488 A	8/1999	DeGrazia et al.
5,548,637	\mathbf{A}	8/1996	Heller	5,944,791 A	8/1999	
5,557,320		9/1996		5,946,616 A 5,946,617 A		Schornack Portaro et al.
5,557,659 5,559,949			Hyde-Thomson Reimer et al.	5,946,629 A	8/1999	Sawyer et al.
5,561,703			Arledge et al.	5,946,630 A		Willars et al.
5,568,536			Tiller et al.	5,950,193 A		Kulkarni
5,572,643		11/1996		5,951,643 A 5,951,652 A	9/1999 9/1999	Shelton et al. Ingrassia, Jr. et al.
5,574,824 5,579,472			Slyh et al. Keyworth, II et al.	5,951,032 A 5,954,798 A	9/1999	
5,590,133			Bilstrom et al.	5,960,074 A	9/1999	
5,592,538			Kosowsky et al.	5,960,173 A	9/1999	Tang et al.
5,604,788		2/1997		5,960,429 A 5,961,620 A	9/1999 10/1999	Peercy et al. Trent et al.
5,608,786 5,615,336		3/1997	Robson et al.	5,966,663 A	10/1999	Gleason
5,619,648			Canale et al.	5,970,122 A	10/1999	LaPorta et al.
5,625,670		4/1997	Campana, Jr. et al.	5,974,446 A	10/1999	Sonnenreich et al.
5,631,946			Campana, Jr. et al.	5,978,673 A 5,978,842 A	11/1999 11/1999	Alperovich et al. Noble et al.
5,634,129 5,646,982			Dickinson Hogan et al.	5,987,113 A	11/1999	James
5,673,308			Akhavan	5,987,376 A	11/1999	Olson et al.
5,678,179	\mathbf{A}	10/1997	Turcotte et al.	5,991,791 A	11/1999	Siefert
5,684,494			Nathrath et al.	5,999,932 A 6,006,331 A	12/1999	Paul Chu et al.
5,694,616 5,697,060		12/1997	Johnson Akahane	6,009,413 A		Webber et al.
5,706,211	A		Beletic et al.	6,012,051 A		Sammon, Jr. et al.
5,706,501			Horikiri	6,014,429 A	1/2000 1/2000	LaPorta et al.
5,710,884 5,717,656			Dedrick Dourbal	6,014,638 A 6,020,884 A	2/2000	Burge et al. MacNaughton et al.
5,721,906		2/1998		6,021,433 A	2/2000	Payne et al.
5,724,567			Rose et al.	6,026,403 A	2/2000	Siefert
5,726,984			Kubler et al.	6,026,429 A 6,028,866 A	2/2000 2/2000	Jones et al. Engel
5,737,726 5,742,668			Cameron et al. Pepe et al.	6,038,445 A	3/2000	Alperovich et al.
5,742,905			Pepe et al.	6,038,451 A	3/2000	Syed et al.
5,749,081			Whiteis et al.	6,041,311 A	3/2000	Chislenko et al.
5,760,771			Blonder et al.	6,049,533 A 6,049,565 A	4/2000 4/2000	Norman et al. Paradine et al.
5,761,196 5,764,916			Ayerst et al. Busey et al.	6,049,777 A	4/2000	Sheena et al.
5,771,280			Johnson	6,061,056 A	5/2000	Menard et al.
5,774,670	A	6/1998	Montulli	6,064,723 A	5/2000	
5,774,673		6/1998		6,064,976 A	5/2000	Tolopka
5,793,365 5,793,762			Tang et al. Penners et al.	6,065,047 A 6,065,056 A	5/2000	Carpenter et al. Bradshaw et al.
5,796,394			Wicks et al.	6,067,529 A		Ray et al.
5,796,948		8/1998		6,067,561 A	5/2000	
5,799,157	A	8/1998	Escallon	6,070,140 A	5/2000	Tran
5,799,284			Bourquin	6,073,109 A	6/2000	
5,802,466 5,802,470			Gallant et al. Gaulke et al.	6,073,138 A 6,076,100 A	6/2000	de I'Etraz Cottrille et al.
5,002,470	Α	<i>3</i> / 1330	Gauire et al.	0,070,100 A	0/2000	Comme et al.

US 9,203,794 B2

Page 3

(56)	References Cited			6,347,332 6,349,299		2/2002	Malet Spencer et al.
	U.S. PATENT DOCUMENTS			6,351,761 6,351,777	B1	2/2002	Cantone et al. Simonoff
6,078,7	10 A	6/2000	DeTreville	6,360,251			Fujita et al.
6,081,8			Sidana	6,360,252			Rudy et al.
6,081,8			Schindler	6,363,248 6,366,907			Silverman Fanning
6,085,23 6,088,43		7/2000	Carino, Jr. et al.	6,374,246			Matsuo
6,091,9			Carr et al.	6,374,260	B1	4/2002	Hoffert et al.
6,091,9	8 A	7/2000	Bergkvist et al.	6,374,290			Scharber
6,092,0			Chislenko et al.	6,377,931 6,381,594			Shlomot Eichstaedt et al.
6,094,69 6,112,0			Shaffer et al. Sormunen et al.	6,385,455			St. Clair et al.
6,112,1		8/2000		6,385,619			Eichstaedt et al.
6,115,4		9/2000		6,389,032 6,389,127		5/2002	Vardi et al.
6,115,66 6,119,0			Siccardo et al. Alperovich et al.	6,389,372			Glance et al.
6,128,6			Papierniak et al.	6,392,669	B1		Matoba et al.
6,128,7	89 A	10/2000	Fleming, III	6,393,464			Dieterman
6,134,4			Holmes et al.	6,393,465 6,396,512		5/2002 5/2002	Nickerson
6,134,4 6,134,5			Sasuta et al. Kennedy	6,404,438			Hatlelid
6,138,1		10/2000	Moon et al.	6,405,035		6/2002	
6,138,1			Boyle et al.	6,408,282 6,415,318		6/2002	Buist Aggarwal et al.
6,141,5			Begeja et al. Anderson	6,418,203		7/2002	
6,144,9 6,148,1			Bridges et al.	6,421,439	B1	7/2002	Liffick
6,148,3		11/2000	Cuomo et al.	6,421,675	B1	7/2002	
6,148,3		11/2000		6,421,709 6,423,012			McCormick et al. Kato et al.
6,151,53 6,157,6			Papierniak et al. Boss et al.	6,424,996			Killcommons et al.
6,161,1			Rochkind	6,425,006	B1	7/2002	Chari et al.
6,161,1	80 A	12/2000	Horvitz et al.	6,425,012			Trovato et al.
6,166,73			Goode et al.	6,430,602 6,430,604		8/2002	Kay et al. Ogle et al.
6,167,2 6,169,9			Yla-Outinen Wagner et al.	6,434,599		8/2002	
6,175,8	31 B1		Weinreich et al.	6,434,606			Borella et al.
6,175,8			Mohler	6,442,589 6,442,591		8/2002	Takahashi et al. Haynes et al.
6,178,33 6,185,60			Holmes et al. Henderson et al.	6,442,591		8/2002	Wright et al.
6,189,0			Birrell et al.	6,446,112		9/2002	Bunney et al.
6,192,3		2/2001		6,446,118			Gottlieb
6,195,3			Skalecki et al.	6,446,119 6,449,344			Olah et al. Goldfinger et al.
6,195,6 6,195,6			Handel et al. Rucker et al.	6,449,365			Hodges et al.
6,198,7			Chang et al.	6,449,479		9/2002	Sanchez
6,199,0		3/2001	Gershman et al.	6,449,634 6,452,950		9/2002	Capiel Ohisson et al.
6,199,1			Sakaguchi et al. Ben-Shachar et al.	6,457,044			IwaZaki
6,208,99 6,212,1			Harsch	6,457,062		9/2002	Pivowar
6,212,2			Ketcham	6,460,073	B1		Asakura
6,212,5	18 B1	4/2001	DeSimone et al.	6,463,464 6,463,471			Lazaridis et al 709/207 Dreke et al.
6,212,5 6,223,1	77 B1	4/2001 4/2001	Segur Tatham	6,466,918	Bl	10/2002	Spiegel et al.
6,237,0			Namekawa	6,466,969			Bunney et al.
6,237,0		5/2001	Hayes, Jr.	6,473,629 6,480,830			Chang et al. Ford et al.
6,243,0 6,243,7		6/2001	Elliot Shapiro et al.	6,480,885		11/2002	
6,247,0			Bates et al.	6,483,913	B1	11/2002	Smith
6,252,9	52 B1	6/2001	Kung et al.	6,484,196			Maurille
6,256,5			Wagner et al.	6,487,583 6,487,584		11/2002	Harvey et al.
6,259,6° 6,259,9		7/2001 7/2001	Bims et al.	6,490,584			Barrett et al.
6,260,1			Aggarwal et al.	6,493,703			Knight et al.
6,269,3			Robertson	6,499,053 6,505,167			Marquette Horvitz et al.
6,282,43 6,292,7			Wagner et al. Pu et al.	6,507,866		1/2003	
6,292,7			Chang et al.	6,512,570	B2	1/2003	Garfinkle et al.
6,301,6	9 B1	10/2001	Aravamudan et al.	6,512,930			Sandegren
6,304,8			Liddy et al.	6,513,026			Horvitz et al.
6,311,2 6,317,8		10/2001 11/2001		6,515,681 6,519,629		2/2003	Harvey et al.
6,324,5			de I'Etraz et al.	6,519,639			Glasser et al.
6,327,5			Chidlovskii et al.	6,519,648	В1	2/2003	Eyal
6,330,5		12/2001		6,529,586			Elvins et al.
6,334,1		12/2001		6,529,903			Smith et al.
6,337,7 6,343,3			Shiota et al. Glorikian	6,535,228 6,535,586			Bandaru et al. Cloutier et al.
0,545,5	., 1)1	1/2002	Giorikian	5,555,560	יים	5/2003	Civation of air.

US 9,203,794 B2 Page 4

(56)			Referen	ces Cited	6,731,308			Tang et al.
	1	II S II	PATENT	DOCUMENTS	6,732,103 6,732,155		5/2004 5/2004	Strick et al. Meek
	`	0.5.1		DOCCIVILIVIS	6,732,185		5/2004	Reistad
	6,539,375	B2	3/2003	Kawasaki	6,742,127		5/2004	Fox et al.
	6,539,421			Appelman et al.	6,744,764		6/2004	Bigdeliazari et al.
	6,542,500			Gerszberg et al.	6,750,881 6,751,603		6/2004 6/2004	Appelman Bauer et al.
	6,549,933			Barrett et al.	6,754,904			Cooper et al.
	6,549,937 6,556,823			Auerbach et al. Clapton et al.	6,757,365			Bogard
	6,557,027		4/2003		6,757,531		6/2004	Haaramo
	6,564,213		5/2003	Ortega et al.	6,757,682		6/2004	Naimark et al.
	6,564,261			Gudjonsson et al.	6,760,412 6,760,454		7/2004	Loucks Shreve et al.
	6,564,264 6,567,796			Creswell et al. Yost et al.	6,760,580		7/2004	Robinson et al.
	6,567,807		5/2003		6,760,753		7/2004	Ohgushi et al.
	6,571,234			Knight et al.	6,760,754		7/2004	Isaacs et al.
	6,583,799			Manolis et al.	6,772,188 6,781,608			Cloutier Crawford
	6,584,494			Manabe et al.	6,782,414			Xue et al.
	6,587,127 6,594,363		7/2003	Leeke et al.	6,785,554			Amerga
	6,594,673			Smith et al.	6,788,769		9/2004	Waites
	6,594,682			Peterson et al.	6,799,039			Wu et al.
	6,598,172			VanDeusen et al.	6,800,031 6,801,659		10/2004 10/2004	Di Cesare
	6,600,725 6,604,133		7/2003	Aggarwal et al.	6,807,558		10/2004	Hassett et al.
	6,606,647			Shah et al 709/206	6,807,562		10/2004	Pennock et al.
	6,606,657			Zilberstein et al.	6,816,884		11/2004	Summers
	6,607,136			Atsmon et al.	6,820,054		11/2004	Erell et al.
	6,611,822		8/2003		6,826,284 6,829,607		11/2004 12/2004	Benesty et al. Tafoya et al.
	6,615,237 6,615,241			Kyne et al. Miller et al.	6,832,245		12/2004	Isaacs et al.
	6,618,747			Flynn et al.	6,834,306		12/2004	Tsimelzon
	6,625,423		9/2003		6,839,554		1/2005	McDowell
	6,628,194			Hellebust et al.	6,839,735		1/2005 1/2005	Wong et al.
	6,633,630			Owens et al.	6,839,737 6,848,008		1/2005	Sevanto et al.
	6,636,733 6,636,850		10/2003	Helferich Lepien	6,848,542		2/2005	Gailey et al.
	6,636,888			Bookspan et al.	6,853,982		2/2005	Smith et al.
	6,640,218		10/2003		6,854,007		2/2005	Hammond
	6,640,223			Jones et al.	6,856,999 6,859,460		2/2005 2/2005	Flanagin et al. Chen
	6,643,641 6,643,669			Snyder Novak et al.	6,862,298		3/2005	Smith et al.
	6,647,259			Boyle et al.	6,868,498		3/2005	
	6,647,383			August et al.	6,876,970		4/2005	Silver et al.
	6,654,800			Rieger, III	6,883,019		4/2005	Sengupta et al.
	6,658,095		12/2003 12/2003	Yoakum et al.	6,895,426 6,898,626		5/2005 5/2005	Cortright et al. Ohashi
	6,658,260 6,661,793	B2 R1		Pogrebinsky	6,901,398			Horvitz et al.
	6,665,317			Scott	6,901,559		5/2005	Blum
	6,665,676	B2		Twig et al.	6,904,026		6/2005	Tarnanen et al.
	6,665,715		12/2003		6,907,243 6,912,505		6/2005	Linden et al.
	6,665,728 6,677,968			Graumann et al. Appelman	6,912,563			Parker et al.
	6,678,719	Bl	1/2004	Stimmel	6,912,564	В1	6/2005	Appelman et al.
	6,683,889	В1		Shaffer et al.	6,917,813			Elizondo
	6,684,240			Goddard	6,917,965 6,920,478		7/2005	Gupta et al. Mendiola et al.
	6,687,362 6,687,739			Lindquist et al. Anupam	6,925,469		8/2005	Headings et al.
	6,687,745			Franco et al.	6,931,419		8/2005	Lindquist
	6,691,162	В1	2/2004		6,934,367			LaPierre et al.
	6,694,353			Sommerer	6,952,805 6,957,077		10/2005 10/2005	Tafoya et al.
	6,697,807			McGeachie	6,985,943			Deryugin et al.
	6,697,824 6,697,840			Bowman-Amuah Godefroid	6,990,628		1/2006	Palmer et al.
	6,699,125			Kirmse et al.	6,993,325		1/2006	Waesterlid
	6,701,343			Kenyon	6,999,566		2/2006	
	6,701,348			Sommerer	6,999,959 7,003,551		2/2006	Lawrence et al.
	6,701,351 6,704,727		3/2004	Gann Kravets	7,003,331		2/2006	Arye
	6,708,033			Linkola et al.	7,007,008		2/2006	Goel et al.
	6,708,205			Sheldon et al.	7,007,228	В1	2/2006	Carro
	6,710,725		3/2004		7,010,312			Zechlin
	6,711,565				7,016,978			Malik et al.
	6,714,519 6,714,791			Luzzatti et al.	7,020,849 7,031,961		3/2006	Chen Pitkow et al.
	6,714,791			Friedman Carey et al.	7,031,961			Fellenstein et al.
	6,721,784			Leonard et al.	7,032,007			Doss et al.
	6,728,357			O'Neal et al.	7,035,926			Cohen et al.

US 9,203,794 B2

Page 5

(56)	References Cited			7,401,098		7/2008	
	U.S	S. PATENT	DOCUMENTS	7,403,942 7,406,715		7/2008	Bayliss Clapper
				7,411,939			Lamb et al.
	7,039,193 B2		Mantegna et al.	7,417,650 7,424,510			Horvitz et al. Gross et al.
	7,039,639 B2 7,043,530 B2		Brezin et al. Isaacs et al.	7,428,580		9/2008	Hullfish et al.
	7,054,918 B2	5/2006	Poleyn	7,428,585			Owens et al.
	7,058,036 B1		Yu et al.	7,475,113 7,478,414		1/2009 1/2009	
	7,058,690 B2 7,058,892 B1		Machiro MacNaughton et al.	7,499,973			Couts et al.
	7,062,533 B2	6/2006	Brown et al.	7,509,148			Pisutha-Arnond et al.
	7,065,186 B1		Myers et al.	7,512,407 7,543,243			Wu et al. Schwartz et al.
	7,068,769 B1 7,076,504 B1		Weaver et al.	7,552,460			Goldman
	7,076,546 B1		Bates et al.	7,590,696		9/2009	
	7,080,018 B1		Fox et al.	7,600,032 7,603,417		10/2009	Mantegna et al. Ben-Yoseph
	7,080,139 B1 7,082,407 B1		Briggs et al. Bezos et al.	7,603,683		10/2009	
	7,089,237 B2		Turnbull et al.	7,613,776		11/2009	
	7,089,287 B2		Bellotti et al.	7,624,172 7,640,306		11/2009 12/2009	Austin-Lane Appelman et al.
	7,092,952 B1 7,092,998 B2			7,653,693		1/2010	
	7,096,009 B2		Mousseau et al.	7,675,903			Ozugur et al.
	7,096,030 B2			7,680,796 7,686,693			Yeh et al. Danieli et al.
	7,096,214 B1 7,113,803 B2		Bharat et al.	7,716,287			Appelman et al.
	7,117,254 B2		Lunt et al.	7,725,541		5/2010	Daniell et al.
	7,124,123 B1	10/2006	Roskind et al.	7,725,542			Daniell et al.
	7,127,232 B2		O'Neil et al.	7,752,273 7,774,410		8/2010	Ito et al.
	7,130,956 B2 7,133,506 B1			7,774,711			Valeski
	7,133,898 B1			7,836,194			Mantegna et al.
	7,136,903 B1		Phillips et al.	7,899,862 7,908,327			Appelman et al. Kucharewski
	7,139,806 B2 7,142,642 B2		Hayes et al. McClelland et al.	7,921,368		4/2011	Moody et al.
	7,146,404 B2		Kay et al.	7,956,739		6/2011	Hong et al.
	7,146,416 B1		Yoo et al.	7,958,212 7,996,527			Wong et al. Isaacs et al.
	7,162,528 B1 7,177,880 B2		Simonoff	8,001,199			Appelman
	7,181,417 B1		Langseth et al.	8,005,919	B2	8/2011	Mehanna
	7,181,498 B2		Zhu et al.	8,015,504 8,019,834			Lynch et al. Horvitz et al.
	7,185,059 B2 7,188,143 B2		Daniell et al.	8,055,675			Higgins et al.
	7,188,153 B2		Lunt et al.	8,090,821	B2	1/2012	Holt et al.
	7,190,956 B2		Dorenbosch et al.	8,117,265			Ben-Yoseph
	7,194,516 B2 7,200,634 B2		Giacobbe et al. Mendiola et al.	8,122,137 8,150,922		4/2012	Appelman et al. Griffin et al.
	7,200,634 B2 7,203,507 B2		Smith et al.	8,156,193	B1	4/2012	Odell
	7,206,814 B2	4/2007	Kirsch	8,167,712		5/2012	
	7,209,942 B1	4/2007	Hori et al. Major et al.	8,191,001 8,224,916			Van Wie et al. Kucharewski
	7,209,955 B1 7,212,617 B2		Owens et a	8,316,117	B2	11/2012	Nguyen et al.
	7,218,921 B2	5/2007	Mendiola et al.	8,452,849	B2	5/2013	Mehanna
	7,222,309 B2 7,231,428 B2		Chupin et al.	8,473,572 8,498,289			Austin-Lane Castell et al.
	7,231,428 B2 7,231,453 B2		Mantegna et al.	8,577,972		11/2013	Heikes
	7,231,478 B2	6/2007	Leijten	8,812,583		8/2014	
	7,237,002 B1 7,237,011 B1		Estrada St. Pierre	2001/0002469 2001/0003202			Bates et al. Mache et al.
	7,240,093 B1		Danieli et al.	2001/0003203	A1	6/2001	Mache
	7,246,371 B2	7/2007	Diacakis et al.	2001/0005861			Mousseau et al.
	7,257,639 B1 7,269,590 B2		Li et al. Hull et al.	2001/0012286 2001/0013050		8/2001	Huna et al. Shah
	7,269,590 B2 7,269,627 B2		Knauerhase	2001/0013069	A1	8/2001	
	7,275,215 B2	9/2007	Werndorfer et al.	2001/0016823			Richards et al.
	7,281,053 B2		Mantegna et al.	2001/0018858 2001/0025280		9/2001 9/2001	Mandato et al.
	7,297,110 B2 7,299,257 B2		Goyal et al. Boyer et al.	2001/0032193	A1	10/2001	Ferber
	7,305,624 B1	12/2007	Siegel	2001/0034224			McDowell et al.
	7,313,760 B2		Grossman	2001/0048735		12/2001	O'Neal Gantz et al.
	7,319,882 B2 7,324,826 B2		Mendiola et al. Carey et al.	2001/0056363 2002/0002520		1/2001	
	7,337,219 B1		Meenan et al.	2002/0002586			Rafal et al.
	7,366,522 B2	4/2008	Thomas	2002/0006126			Johnson et al.
	7,370,035 B2		Gross et al.	2002/0006788 2002/0006803			Knutsson et al. Mendiola et al.
	7,370,278 B2 7,383,339 B1		Malik et al. Meenan et al.	2002/0006803			Mendiola et al.
	7,392,306 B1		Donner et al.	2002/0010803			Oberstein et al.

US 9,203,794 B2

Page 6

(56)	Referen	ices Cited	2002/0178161			Brezin et al.
TT (S PATENT	DOCUMENTS	2002/0181703 2002/0184089			Logan et al. Tsou et al.
0.,), 17 3 1151 9 1	DOCOMENTS	2002/0184128			Holtsinger
2002/0016818 A1	2/2002	Kirani et al.	2002/0184309			Danker et al.
2002/0021307 A1		Glenn et al.	2002/0187794			Fostick et al.
2002/0023131 A1		Wu et al.	2002/0188620 2002/0194378		12/2002	Doss et al.
2002/0023132 A1 2002/0023147 A1		Tornabene et al. Kovacs et al.	2002/0199095			Bandini et al.
2002/0023147 A1 2002/0029224 A1		Carlsson	2003/0004855		1/2003	
2002/0032729 A1		Erickson et al.	2003/0004872			Gardi et al.
2002/0032742 A1		Anderson	2003/0006912 2003/0009385			Brescia Tucciarone et al.
2002/0035605 A1 2002/0042830 A1		McDowell et al. Bose et al.	2003/0009383			Lindeman et al.
2002/0042830 A1 2002/0046243 A1		Morris	2003/0014485			Banatwala
2002/0046299 A1		Lefeber et al.	2003/0018704			Polychronidis et al.
2002/0049610 A1		Gropper	2003/0018726 2003/0018747			Low et al. Herland et al.
2002/0049704 A1 2002/0049751 A1		Vanderveldt et al. Chen et al.	2003/0018/4/			Brown et al.
2002/0049731 A1 2002/0049806 A1		Gatz et al.	2003/0023684			Brown et al.
2002/0049847 A1		McArdle et al.	2003/0023692		1/2003	
2002/0049852 A1		Lee et al.	2003/0023875		1/2003	
2002/0052921 A1		Morkel	2003/0025824 2003/0028524		2/2003	Ishikawa Keskar
2002/0054092 A1 2002/0059379 A1		Hedloy Harvey et al.	2003/0028595			Vogt et al.
2002/0059401 A1		Austin	2003/0028597		2/2003	Salmi
2002/0059425 A1		Belfore et al.	2003/0028884			Swart et al.
2002/0059526 A1		Dillon et al.	2003/0037110 2003/0037112			Yamamoto Fitzpatrick et al.
2002/0065828 A1 2002/0065856 A1		Goodspeed Kisiel	2003/0037112			Nishio et al.
2002/0005890 A1 2002/0065894 A1		Dalal et al.	2003/0042306		3/2003	
2002/0066036 A1	5/2002	Makineni et al.	2003/0045272		3/2003	
2002/0071539 A1		Diament et al.	2003/0046097 2003/0050916		3/2003	LaSalle et al.
2002/0078077 A1 2002/0083127 A1		Baumann et al. Agrawal	2003/0050916		3/2003	
2002/0083127 A1 2002/0083136 A1		Whitten, II	2003/0051161			Smith et al.
2002/0084888 A1			2003/0052915			Brown et al.
2002/0087630 A1			2003/0054830 2003/0055831		3/2003	Williams et al.
2002/0087649 A1		Horvitz	2003/0055897			Brown et al.
2002/0087704 A1 2002/0091667 A1		Chesnais et al. Jaipuria et al.	2003/0058478		3/2003	Aoki
2002/0091936 A1			2003/0060211		3/2003	
2002/0095464 A1			2003/0064422 2003/0065721			McDevitt Roskind
2002/0095663 A1 2002/0097856 A1		Joory Wullert, II	2003/0003721			Harms et al.
2002/0097836 A1 2002/0103801 A1		Lyons	2003/0078987			Serebrennikov et al.
2002/0112181 A1		Smith	2003/0079024			Hough et al.
2002/0112239 A1		Goldman	2003/0081001 2003/0083046		5/2003 5/2003	
2002/0116461 A1		Diacakis et al.	2003/0083040			Laumen et al 370/462
2002/0116463 A1 2002/0116528 A1			2003/0087632		5/2003	Sagi et al.
2002/0116641 A1		Mastrianni	2003/0088554		5/2003	
2002/0118809 A1		Eisenberg	2003/0101226 2003/0101343		5/2003	Quine Eaton et al.
2002/0119789 A1 2002/0120687 A1		Friedman Diacakis et al.	2003/0101343			Dicker et al.
2002/0120697 A1		Generous et al.	2003/0105820		6/2003	Haims et al.
2002/0120779 A1		Teeple et al.	2003/0105822			Gusler et al.
2002/0123328 A1		Snip et al.	2003/0106054 2003/0110056			Billmaier et al. Berghofer
2002/0123988 A1 2002/0128047 A1		Dean et al.	2003/0110030		6/2003	
2002/0128047 A1 2002/0130904 A1		Becker et al.	2003/0112945	A1		Brown et al.
2002/0133369 A1	9/2002	Johnson	2003/0115585			Barsness et al.
2002/0136390 A1		Lang et al.	2003/0119532 2003/0119561		6/2003	Hatch et al.
2002/0137530 A1 2002/0138650 A1		Karve Yamamoto et al.	2003/0120732			Couts et al.
2002/013655 A1		Headings et al.	2003/0126267	A1		Gutta et al.
2002/0144283 A1	10/2002	Headings et al.	2003/0129969			Rucinski
2002/0151294 A1		Kirby et al.	2003/0130014 2003/0131061			Rucinski Newton
2002/0154178 A1 2002/0155826 A1		Barnett Robinson et al.	2003/0131001		7/2003	
2002/0153826 A1 2002/0160757 A1		Shavit et al.	2003/0135659			Bellotti et al.
2002/0160805 A1	10/2002	Laitinen et al.	2003/0154254	Al	8/2003	Awasthi
2002/0165000 A1			2003/0154257			Hantsch et al.
2002/0165729 A1		Kuebert et al.	2003/0154373			Shimada et al. Eaton et al.
2002/0169748 A1 2002/0174050 A1		Macholda Evnard	2003/0154398 2003/0156138			Vronay et al.
2002/0174030 A1 2002/0174260 A1			2003/0150138			Brown et al.
2002/0175953 A1			2003/0158855			Farnham et al.
2002/0178072 A1	11/2002	Gusler et al.	2003/0158860	Al	8/2003	Caughey

US 9,203,794 B2Page 7

(56)	Referen	ices Cited	2004/0052356			McKinzie et al.
211	PATENT	DOCUMENTS	2004/0054646 2004/0054729		3/2004 3/2004	Daniell et al. Fukuizumi et al.
0.5	. FAILINI	DOCUMENTS	2004/0054733		3/2004	Weeks
2003/0158864 A1	8/2003	Samn	2004/0054735		3/2004	Daniell et al.
2003/0158902 A1		Volach	2004/0054736 2004/0056901		3/2004	Daniell et al.
2003/0167308 A1		Schran	2004/0059708		3/2004 3/2004	March et al. Dean et al.
2003/0167310 A1 2003/0167324 A1		Moody et al. Farnham et al.	2004/0059781		3/2004	Yoakum et al.
2003/0172349 A1		Katayama	2004/0059942			Xie
2003/0174154 A1	9/2003	Yukie et al.	2004/0064586			Weigand
2003/0174164 A1		Capps	2004/0073643 2004/0076272		4/2004 4/2004	Hayes et al. Zafar et al.
2003/0177175 A1 2003/0177190 A1		Worley et al. Moody et al.	2004/0078440		4/2004	Potter et al.
2003/0177130 A1		O'Dell et al.	2004/0078445		4/2004	Malik
2003/0185232 A1		Moore et al.	2004/0092250		5/2004	Valloppillil
2003/0185360 A1		Moore et al.	2004/0092272 2004/0092273		5/2004 5/2004	Valloppillil Valloppillil
2003/0187813 A1 2003/0188263 A1		Goldman Bates et al.	2004/0098462		5/2004	Horvitz et al.
2003/0191673 A1	10/2003		2004/0098491		5/2004	Costa-Requena et al.
2003/0191753 A1	10/2003		2004/0103156		5/2004	Quillen et al.
2003/0191969 A1		Katsikas	2004/0107119 2004/0111261		6/2004 6/2004	Ohishi Chaudhari et al.
2003/0193967 A1 2003/0197729 A1		Fenton et al. Denoue et al.	2004/0117443		6/2004	Barsness
2003/0200272 A1		Campise et al.	2004/0117451		6/2004	Chung
2003/0204568 A1		Bhargava et al.	2004/0117831		6/2004	Ellis et al.
2003/0204741 A1		Schoen et al.	2004/0122681 2004/0122730		6/2004 6/2004	Ruvolo Tucciarone et al.
2003/0206195 A1 2003/0206619 A1		Matsa et al. Curbow et al.	2004/0122810		6/2004	Mayer
2003/0208545 A1		Eaton et al.	2004/0122855		6/2004	Ruvolo
2003/0208547 A1		Branimir	2004/0122901		6/2004	Sylvain
2003/0210265 A1		Haimberg	2004/0133564 2004/0137882		7/2004 7/2004	Gross et al. Forsyth
2003/0212686 A1 2003/0212745 A1		Chu-Carroll et al. Caughey	2004/0137882		7/2004	Tang et al.
2003/0217143 A1 2003/0217109 A1		Ordille et al.	2004/0143564	A1	7/2004	Gross et al.
2003/0220946 A1	11/2003		2004/0148347		7/2004	Appelman et al.
2003/0220976 A1	11/2003		2004/0152477 2004/0152517		8/2004 8/2004	Wu et al. Hardisty et al.
2003/0222902 A1 2003/0225834 A1		Chupin et al. Lee et al.	2004/0152517		8/2004	Ito et al.
2003/0225834 A1 2003/0225836 A1		Lee et al.	2004/0153518		8/2004	Seligmann et al.
2003/0225850 A1	12/2003		2004/0153832		8/2004	Hasha
2003/0227487 A1	12/2003		2004/0154022 2004/0157586		8/2004 8/2004	Boss et al. Robinson et al.
2003/0227894 A1 2003/0228908 A1		Wang et al. Caiafa et al.	2004/0157380		8/2004	Shirwadkar et al.
2003/0228908 A1 2003/0229668 A1	12/2003		2004/0171396	A1	9/2004	Carey et al.
2003/0229717 A1	12/2003	Teague	2004/0172396		9/2004	Vanska
2003/0229722 A1	12/2003		2004/0172481 2004/0176076		9/2004 9/2004	Engstrom Uppuluri
2003/0233265 A1 2003/0233413 A1	12/2003	Lee et al. Becker	2004/0176081		9/2004	Bryham et al.
2003/0233416 A1	12/2003		2004/0177119		9/2004	Mason et al.
2003/0233417 A1	12/2003	Beyda et al.	2004/0179039		9/2004	Blattner et al.
2003/0233418 A1 2003/0233650 A1	12/2003		2004/0183829 2004/0186738		9/2004 9/2004	Kontny et al. Reisman
2003/0233030 A1 2004/0001480 A1	1/2004	Zaner et al. Tanigawa et al.	2004/0186887			Galli et al.
2004/0002972 A1		Pather et al.	2004/0186909			Greenwood
2004/0003041 A1		Moore et al.	2004/0186989 2004/0193684		9/2004 9/2004	Clapper Ben-Yoseph
2004/0003046 A1 2004/0003071 A1		Grabelsky et al. Mathew et al.	2004/0193722			Donovan
2004/0005871 A1 2004/0005881 A1		Ala-Luukko	2004/0196315		10/2004	Swearingen et al.
2004/0010808 A1		deCarmo	2004/0198351		10/2004	Knotts
2004/0017396 A1		Werndorfer et al.	2004/0199581 2004/0199582		10/2004 10/2004	Kucharewski et al. Kucharewski et al.
2004/0019612 A1 2004/0019637 A1		Tyra et al. Goodman et al.	2004/0201624		10/2004	Crawford
2004/0019645 A1		Goodman et al.	2004/0203766		10/2004	Jenniges et al.
2004/0019650 A1		Auvenshine	2004/0204068		10/2004	Komaki
2004/0019671 A1	1/2004		2004/0204140 2004/0205126		10/2004 10/2004	Nagata Ben-Yoseph
2004/0019695 A1 2004/0024478 A1		Fellenstein et al. Hans et al.	2004/0205127		10/2004	Ben-Yoseph
2004/0024822 A1		Werndorfer et al.	2004/0210639		10/2004	Ben-Yoseph et al.
2004/0024892 A1		Creswell et al.	2004/0210844		10/2004	Pettinati
2004/0029567 A1		Timmins et al.	2004/0215648		10/2004	Marshall Szete et al
2004/0029572 A1 2004/0030741 A1	2/2004 2/2004	Nerot Wolton et al.	2004/0215721 2004/0215793		10/2004 10/2004	Szeto et al. Ryan et al.
2004/0030741 A1 2004/0030750 A1		Moore et al.	2004/0219936			Kontiainen
2004/0030787 A1		Jandel	2004/0220897	A1	11/2004	Bernhart et al.
2004/0031058 A1		Reisman	2004/0221309		11/2004	
2004/0044536 A1		Fitzpatrick et al.	2004/0231003		11/2004	
2004/0044723 A1 2004/0044736 A1		Bell et al. Austin-Lane et al.	2004/0243844 2004/0255122		12/2004	Adkins Ingerman et al.
2004/0044/30 AT	3/2004	Austin-Lane et al.	2004/0233122	A1	12/2004	mgerman et ar.

US 9,203,794 B2

Page 8

(56)	Referer	ices Cited	2006/0271687			Alston et al.
II S P	ATENT	DOCUMENTS	2006/0288077 2007/0011314		12/2006 1/2007	Chen et al. Horvitz et al.
0.5.1	ALLIVI	DOCOMENTS	2007/0092072		4/2007	Jacobs
2004/0267604 A1	12/2004	Gross	2007/0112966		5/2007	Eftis et al.
2005/0004978 A1		Reed et al.	2007/0157098 2007/0185957		7/2007 8/2007	Chupin et al. Mandalia et al.
2005/0004984 A1 2005/0004995 A1		Simpson Stochosky	2007/0183337		10/2007	Appelman
2005/0004993 AT 2005/0009541 AT		Ye et al.	2008/0008106		1/2008	
2005/0015432 A1		Cohen	2008/0065767		3/2008	Stachura et al.
2005/0021750 A1		Abrams	2008/0133417 2008/0215672		6/2008	Robinson Kloba et al.
2005/0021854 A1 2005/0027382 A1		Bjorkner Kirmse et al.	2008/0215072		10/2008	Altberg et al.
2005/0027382 AT 2005/0038856 AT		Krishnasamy	2008/0258913		10/2008	Busey
2005/0050143 A1		Gusler et al.	2008/0288604		11/2008	Major et al.
2005/0055306 A1		Miller et al.	2009/0016499 2009/0043844		1/2009 2/2009	Hullfish Zimmet et al.
2005/0055340 A1 2005/0055416 A1		Dresden Heikes	2009/0043844		3/2009	Stroe
2005/0066362 A1		Rambo	2009/0070433		3/2009	Karstens
2005/0071251 A1		Linden et al.	2009/0241144		9/2009	Lajoie et al.
2005/0076240 A1		Appleman	2009/0299934 2011/0167116		12/2009 7/2011	Horvitz et al. Kucharewski
2005/0076241 A1		Appelman Koch et al.	2011/010/110		7/2011	
2005/0086305 A1 2005/0091314 A1		Blagsvedt et al.	2011/0282955		11/2011	Appelman
2005/0096084 A1		Pohja et al.	2012/0011110			Mehanna
2005/0102202 A1		Linden et al.	2012/0198012 2012/0233269		8/2012	
2005/0108329 A1		Weaver et al.	2012/0233209			Ben-Yoseph Kucharewski
2005/0108341 A1 2005/0114229 A1		Mathew et al. Ackley	2013/0031638		1/2013	Appelman
2005/0114783 A1	5/2005		2013/0066990		3/2013	
2005/0125559 A1		Mutha	2013/0066991			Ben-Yoseph
2005/0130633 A1		Hill et al.	2013/0066992 2013/0067002		3/2013 3/2013	Ben-Yoseph Heikes
2005/0137963 A1 2005/0144133 A1		Ricketts et al. Hoffman et al.	2013/0067003		3/2013	
2005/0149606 A1		Lyle et al.	2013/0072239			Hullfish
2005/0160144 A1	7/2005	Bhatia	2013/0073580			Mehanna
2005/0171955 A1		Hull et al.	2013/0073627 2013/0073653		3/2013	Mehanna Heikes
2005/0172001 A1 2005/0177486 A1		Zaner et al. Yeager	2013/0073656			Hullfish
2005/0181878 A1		Danieli et al.	2013/0073657		3/2013	
2005/0187020 A1		Amaitis et al.	2013/0073966		3/2013 3/2013	Appelman
2005/0188044 A1		Fleming, III Klein et al.	2013/0073967 2013/0073968		3/2013	Appelman Appelman
2005/0195802 A1 2005/0197846 A1		Pezaris	2013/0080528		3/2013	
2005/0198131 A1		Appelman et al.	2013/0097254		4/2013	Appelman
2005/0198164 A1		Moore et al.	2013/0097255 2013/0117399		4/2013 5/2013	Appelman Appelman
2005/0198172 A1 2005/0198173 A1	9/2005 9/2005	Appelman et al.	2013/011/399		5/2013	Mehanna
2005/0198175 A1 2005/0198268 A1		Chandra	2013/0124629		5/2013	Appelman
2005/0204063 A1		O'Brien	2013/0125138		5/2013	Appelman
2005/0208957 A1		Knotts	2013/0132376 2013/0132482		5/2013 5/2013	Mehanna Austin-Lane
2005/0210120 A1 2005/0216300 A1		Yukie et al. Appelman et al.	2013/0132482			Mehanna
2005/0216421 A1	9/2005	Barry et al.	2013/0138680			Mehanna
2005/0223075 A1	10/2005	Swearingen et al.	2013/0144876			Mehanna
		Hardisty et al.	2013/0144898 2013/0144938		6/2013	Mehanna Austin-Lane
	11/2005	Little Zhou et al.	2013/0144971			Austin-Lane
	11/2005		2013/0145040	A1	6/2013	Mehanna
2005/0289469 A1		Chandler et al.	2013/0151546			Mehanna
2006/0009243 A1		Dahan et al.	2013/0159290 2013/0159420		6/2013	Mehanna Appelman
2006/0026237 A1 2006/0031080 A1		Wang et al. Mallya et al.	2013/0159439			Appelman
2006/0031772 A1		Valeski	2013/0159440			Appelman
2006/0036701 A1		Bulfer et al.	2013/0159441 2013/0159442			Appelman
2006/0047187 A1		Goyal et al.	2013/0139442		6/2013 7/2013	Appelman Kucharewski
2006/0047747 A1 2006/0116139 A1		Erickson et al. Appelman	2013/0173722			Austin-Lane
2006/0117380 A1		Tachizawa et al.	2013/0174060		7/2013	
2006/0129678 A1		Morita	2013/0198648		8/2013	
2006/0136584 A1		Decker et al. Sulmar et al.	2013/0198649 2014/0324956		8/2013 10/2014	Austin-Lane Austin-Lane
2006/0149644 A1 2006/0154650 A1		Sulmar et al. Sherman et al.	2014/0324930			Austin-Lane
2006/0161638 A1		Meyer et al.	2015/0113066			Austin-Lane
2006/0168204 A1		Appelman et al.				
2006/0195554 A1		Payne et al.	FO	REIG	N PATE	NT DOCUMENTS
		MacNaughton et al. Patel et al.	EP	0987	7804	3/2000
		Kadayam et al.	EP EP	1011		6/2000
		,				

(56)	References Cited		U.S. Appl. No. 13/617,270, filed Sep. 14, 2012, Appelman.
	FOREIGN PATENT DOCUMENTS		U.S. Appl. No. 13/617,330, filed Sep. 14, 2012, Appelman. U.S. Appl. No. 13/617,350, filed Sep. 14, 2012, Appelman.
EP	1054220	11/2000	U.S. Appl. No. 13/619,036, filed Sep. 14, 2012, Heikes.
EP EP	1054329 1071295	11/2000 1/2001	U.S. Appl. No. 13/619,054, filed Sep. 14, 2012, Heikes.
EP	1091532	4/2001	U.S. Appl. No. 13/620,862, filed Sep. 15, 2012, Appelman et al. U.S. Appl. No. 13/620,863, filed Sep. 15, 2012, Appelman et al.
EP	1102443	5/2001	U.S. Appl. No. 13/620,865, filed Sep. 15, 2003, Appelman et al.
EP	1104961	6/2001	Automated feature of Internet Explorer, www.geocities.com/
EP EP	1104964	6/2001	technofundo/tech/web/ie_autocomplete.html, pp. 1-6, Feb. 18,
EP EP	1104965 1113619	6/2001 7/2001	2004.
EP	1113620	7/2001	"Approved Database for KnockKnock," http://www.knockmail.com/
EP	1113631	7/2001	support/appdatabase.html, pp. 1, as accessed on Dec. 4, 2003.
EP	1113640	7/2001	A. Dornan, "Instant Gratification [instant messaging]", Network
EP	1113659	7/2001	Magazine, Aug. 2000, INSPEC p. 9.
EP EP	1113677 1207655	7/2001 5/2002	A.C.M. Fong et al., "Towards an Open Protocol for Secure Online
EP	1213874	6/2002	Presence Notification", Computer Standards & Interfaces, Sep. 2001,
EP	1237384	9/2002	INSPEC p. 2. AE. Milewski et al., "Providing Presence Cues to Telephone Users",
\mathbf{EP}	1248484	10/2002	Proceedings of CSCW 2000, ACM Conference on Computer Sup-
EP	1248486	10/2002	ported Cooperative Work, Jan. 2000, INSPEC p. 3.
EP EP	1255414 1274222	11/2002 1/2003	America Online Growing Pains, Newsbytes, Mar. 7, 1995.
EP	1565845	8/2008	Armstrong, R., et al., "Web Watcher: a learning apprentice for the
GB	2328835	3/1999	world wide web," Feb. 1, 1995,7 pages.
GB	2357932	7/2001	ATMobile Develops Networking-Sensing Instant Messaging, Dec. 8,
GB	2368747	5/2002	1999, Newsbytes, pp. 1-2.
WO	WO 95/22233	8/1995	"A Countermeasure to Duplicate-detecting Anti-spam Techniques,"
WO WO	WO 97/10558 WO 97/34244	3/1997 9/1997	Robert J. Hall, AT&T Labs Technical Report 99.9.1, May 1999, Abst.
wo	WO 97/37303	10/1997	and pp. 1-26.
WO	WO 97/46955	12/1997	Adeptra Services Overview; Nov. 7, 2002; adeptra.com; pp. 1-7.
WO	WO 98/20410	5/1998	Adeptra, Features; Nov. 27, 2002; adeptra.com; pp. 1-2. America Online Inc., "AOL Instant Messenger", Aug. 29, 2000,
WO	WO 98/47270	10/1998	Internet: www.aol.com/aim/ (18 pages).
WO WO	WO 99/34628 WO 00/10099	7/1999 2/2000	America Online Inc., New AIM 4.7, Sep. 27, 2001, Internet: http://
WO	WO 00/10099 WO 00/42791	7/2000	aim.aol.com (7 pages).
WO	WO 00/43892	7/2000	"Announce: Implementation of E-mail Spam Proposal," Maurice L.
WO	WO 00/47270	8/2000	Marvin, news.admin.net-abuse.misc, Aug. 3, 1996, 2 pages.
WO	WO 00/60809	10/2000	"A Reputation System for Peer-to-Peer Networks," Gupta et al., Jun.
WO WO	WO 00/79396 WO 01/06748	12/2000 1/2001	1-3, 2003, NOSSDAV'03, Monterey, California, pp. 144-152.
WO	WO 01/40957	6/2001	"BestCalls.com Announces the BestCalls Technology Index," Busi-
wo	WO 01/41477	6/2001	ness Wire, Jun. 30, 1999, Business Wire, (2 pages).
WO	WO 01/63423	8/2001	"Business at Cyberspeed; Brainstorm Becomes Quick Internet Hit," Walker, Jan. 24, 1999, The Washington Post, p. A.01 (4 total pages).
WO	WO 01/67622	9/2001	"Better Bayesian Filtering," Paul Graham, Jan. 2003, pp. 1-11, http://
WO WO	WO 01/67787 WO 01/69406	9/2001 9/2001	www.paulgraham.com/better.html.
wo	WO 01/78315	10/2001	B. Raman et al., "Universal Inbox-Providing Extensible Personal
WO	WO 01/80079	10/2001	Mobility and Service Mobility in an Integrated Communication Net-
WO	WO 02/03216	1/2002	work", Proceedings Third IEEE Workshop on Mobile Computing
WO	WO 02/19643 WO 02/28046	3/2002 4/2002	Systems and Applications, Oct. 2000, INSPEC p. 7.
WO WO	WO 02/28046 WO 02/073886	4/2002 9/2002	Brown et al., "WWW Plug-Ins Companion," Que Corporation, Oct.
wo	WO 02/077840	10/2002	1996, pp. 351-362.
WO	WO 02/093400	11/2002	Business Information Corporation, Sep. 1, 1999, Atmobile.com Enters 'IM' World.
WO	WO 02/093875	11/2002	Business Wire Atmobile Corporation, AtMobile awarded U.S. Patent
WO	WO 03/021929	3/2003	Covering Key Elements of its Wireless Instant Messaging System,
WO WO	WO 2006/026908 WO 2004/046875	3/2003 6/2004	Sep. 13, 1999.
WO	WO 2004/046949	6/2004	Boyce, Jim, "Microsoft Office Outlook 2003 Inside Out," Microsoft
WO	WO 2004/046970	6/2004	Press (published Nov. 12, 2003), pp. 252.
WO	WO 2004/088943	10/2004	Brugali, David, "Mediating the Internet," Annals of Software Engi-
WO	WO 2004/111812	12/2004	neering, vol. 13, pp. 285-308, Jun. 2002, Kluwer Academic Publish-
WO WO	WO 2004/111871 WO 2005/010709	12/2004 2/2005	ers, The Netherlands.
wo	WO 2005/054991	6/2005	Bryan Pfaffenberger, Netscape Navigator Gold, AP Professional,
WO	WO 2005/057329	6/2005	Jan. 1997, 4 pages. Cerulean Studios, "Trillian Pro: No Boundaries," (Overview, New
WO	WO 2005/086723	9/2005	Features, Tech Specs, Corporate, Product Tour—16 pages) 1999-
WO	WO 2005/089286	9/2005	2004; first realease Jul. 2000.
WO WO	WO 2006/066092 WO 2006/068955	6/2006 6/2006	Cerulean Studios, "Trillian Pro: Your Freedom to Chat," (Overview,
			Features, Screenshots, Tech Specs—8 total pages) 1999-2004; first
	OTHER P	UBLICATIONS	release Jul. 2000.
			Chen, Hao et al. "Bringing Order to the Web: Automatically Catego-
	ppl. No. 10/974,969, file		rizing Search Results." Proceedings of the SIGCHI Conference on
	* *	ed Dec. 29, 2004, Odell.	human factors in computing systems. ACM Press. pp. 145-152, New
∪.S. A	ppi. No. 13/361,141, file	ed Jan. 30, 2012, Appelman et al.	York, Jan. 2000.

OTHER PUBLICATIONS

Chung-Hwa Herman Rao et al., iMobile: A Proxy-Based Platform for Mobile Services; Network Services Research Center AT&T Labs-Rsearch, Aug. 2001.

Chung-Hwa- Rao, H. Di-Fa Chang, Yi-Bing Lin, "iSMS: an integration platform for short meassage service and IP networks," Network, IEEE, vol. 15, No. 2, pp. 48-55, Mar./Apr. 2001.

"Creating a Single List of Contacts-Google Scholar" available at http://scholar.google.com/scholar?h1=en&1r=

&q=creating+a+single+1ist+1ist+of+contacts&as . . . (Mar. 27, 2007), 10 pages.

CommWorks 8250 Personal Communications Management System; Dec. 11, 2002; commworks.com; pp. 1-2.

CommWorks IP Messaging; Dec. 11, 2002; commworks.com; pp. 1-2.

ConNexus to awareness: extending awareness to mobile users, Tang, J.C. and Yankelovich, N. and Begole, J. and Van Kleek M. and Li, F. and Bhalodia J., Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 221-228, Dec. 2001, ACM Press, New York, NY, USA.

"CrushParty.com: Help," retrieved Jun. 12, 2002 from the World Wide Web: http://www.crushparty/com/help.jsp, 3 pages.

CNET Networks Inc., "PopUp Killer", Sep. 13, 2001, Internet: download. cnet.com/downloads/O-10059-100-6932612 shtml, (3 pages).

Convergys Interactive Alerts Reduce Customer Care Costs and Improve Customer Satisfaction; convergys.com; pp. 1-2, Jan. 22, 2002

"Digital Artifacts for Remembering and Storytelling: Post History and Social Network Fragments," Viegas et al., retrieved fron the World Wide Web: http://we.media.mit.edu/-fviegas/papers/posthistory.snfpdf, (10 pages), Jan. 2004.

Danny Sullivan, "What People Search For," Search Engine Watch, pp. 1-4, http://seachenginewatch.com/facts/searches.html (visited Feb. 13, 2003.

"Degrees of Separation Email Spam Protection", Halfbakery: Degrees of Separation Email Spam Protection, reprinted from http://halfbakery.com/idea/Degrees-20 of -20Separation-20Email-20Spam-20Protecti...printed on Mar. 1, 2004 (3 pages).

"Denied Database for KnockKnock," http://www.knockmail coml support/denydatabase.html, pp. 1, as accessed on Dec. 4, 2003.

"Email Server Control for KnockKnock," http://www.knockmail.com/supporUemailservcont,html, pp. 1-2, as accussed on Dec. 4, 2003.

Ed Bott and Ron Person, UsingWindows 95 with Internet Explorer 4.0, Feb. 17, 1998, Que, Special Edition, (21 pages).

"Finding Others Online: Reputation Systems for Social Online Spaces," Jensen et al., Apr. 20-25, 2002, CHI, Minneapolis, Minnesota, vol. 4, Issue 1, pp. 447-454.

Global Solutions Directory; Nov. 7, 2002; softwaresibm.com; pp. 1-5.

Google Zeitgeist—Search patterns, trends, and surprises according to Google, Jan. 2003, pp. 1-2, http://www.google.com/press/zeitgeist.html (visited Feb. 13, 2003).

G. Held, "Instant Messaging Finds its Voice", Network Magazine, May 2001, INSPEC p. 5.

G. Reif et al.; A Web-based Peer-to-Peer Architecture for Collaborative Nomadic Working; Technical University of Vienna, Distributed Systems Group, Jun. 20, 2000.

Gross et al., "Computer-Supported Cooperative Work and the Internet," IEEE, Sep. 1996, 00. pp. 425-430.

H. Schulzrinne et al., "The IETF Internet Telephony Architecture and Protocols", IEEE Network, May-Jun. 1999, INSPEC p. 11.

Haim Schneider, Lotus Developer Domain, "Adding a popup menu to your Sametime links", pp. 1-8, Jul. 1, 2003.

Hubbub: a sound enhanced mobile instant messenger that supports awareness and opportunistic interactions, Issacs, E. and Waldendowski A.m and Ranganathan, D., Proceedings of the

SIGCHI conference on Human Factors in computing systems: Changing our world, changing ourselves, pp. 179-186, Apr. 2002, ACM Press New York, NY, USA.

Hottie or Nottie? Web Site Voters Let You Know Whether You Sizzle or Fizzle, Marino, Jul. 11, 2001, Florida Times Union, p. C.1. (2 total pages)

Home-tribe.net, http://washingtondc stribe meUmessage/24434dlb-817b-4580 -aa42 -3bffal5 f26a?page=1, (4 pages), printed from Internet Dec. 13, 2004, message dated Oct. 19, 2003.

http://www.friendster.com, (17 pages), Dec. 2004.

http://www.knockrnail.com/support/newsettings.jpg, as accessed on Dec. 4, 2003.

"Icq.anywhere, Email Features-Email Center-ICQ.com," retrieved Apr. 29, 2004 from the World Wide Web: http://www.icq.com/email/popular-features.html, pp. 1-5.

Ion Adroutsopoulos et al., "Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach" University of Athens, Jun. 2000, pp. 1-12.

Ipipi Frequently Asked Questions; Nov. 6, 2002; ipipi.com; pp. 1-2. Ignite Software: Parent Tools Feature Set, "Parent Tools Features," http://www.parent-tools.com/features.htm, Ignite Software, pp. 1-3, as accessed on Dec. 10, 2003.

ICQ 99a, "Welcome to ICQ version 99a", XP-002163918, ICQ Inc., Nov. 1998.

"Instant Messaging is Everyone's Business," Yahoo Business Messenger, Yahoo!, Mar. 2003.

IBM Lotus Software, Sametime Everyplace FAQ Overview Information, pp. 1-3, http://www.lotus.com/products/wireless.nsf/allpublic . . . , (visited Jul. 28, 2003).

IBM Lotus Software, Sametime Everyplace Wireless Collaboration that's Fit for e-Business, pp. 1-6, http://www.lotus.com/products.wireless.nsf/allpublic . . . , (visited Jul. 28, 2003).

IM Means Business IEEE Spectrum, Nov. 2002.

imForwards.com-FAQ's; Oct. 21, 2003.

Index of /tarvizo/oldfiles/elips/tnt-2.4, Jul. 2nd, 2001, TNT, http://web.mit.edu/tarvizo/oldfiles/elips/tnt-2.4/.

Instant messaging in teen life, Grinter, R.E. and Palen, L., Proceedings of the 2002 ACM conference on Computer supported cooperative work, pp. 21-30, Nov. 2002, ACM Press, New York, NY, USA. Instant Messaging with Mobile Phones to Support Awareness, Mitsuoka, M. and Watanabe, S. and Kakuta, J. and Okuyama, S., pp. 223-230, Jan. 2001, IEEE.

"Idea for Online Networking Brings Two Entrepreneurs Together," Patents: Idea for Online Networking Brings Two Entrepreneurs Together, reprinted from http://www.nytimes.com/2003/12/01/technology/technology-media-patents-idea-for-online-networking-brings-two-entrepreneurs.htmlOlpatt.html?acbmn1+0

&adxnnlx=107029 . . . , printed on Nov. 5, 2004 (2 pages).

"Instant Messaging for Gamers," PC Gamer, May 2004, vol. 11, No. 5, (2 pages).

J. Felix Hampe et al., Mobile Electronic Commerce: Reintermediation in the Payment System, Electronic Commerce: The End of the Beginning 13th International Bled Electronic Commerce Conference Bled, Slovenia, Jun. 19-21, 2000.

J. Dudley, "Telstra targets Net spammers", news.com.au , Dec. 2, 2003.

Jabber, Inc., Jabber Wireless Gateway Overview, May 2001.

"Jabber" http://www.jabber.com/index.cgi?CONTENTID=9, as accessed on Dec. 4, 2003.

Jennifer B. Lee, "From 100 countries, a Google snapshot of what's going on," International Herald Tribune, Nov. 29, 2002, pp. 1-3, http://www.iht.com.

Joanna Glasner, "Social Nets Find Friends in VCs", Nov. 17, 2003, available at http://www.wired.com/culture/lifestyle/news/2003/11/61227?currentPage=al.

Jonathan B Postel, "Simple Mail Transfer Protocol", RFC788, Information Science Institute, Nov. 1981.

Julian Byrne, "My Spamblock was thrwarting UCE address culling programs", news.admin.net-abuse.e-mail, Jan. 19, 1997.

"Knock Settings ServersTab," http://www.knockmail.com/support/advserverset.html, pp. 1-2, as accessed on Dec. 4, 2003.

OTHER PUBLICATIONS

Komatsu et al., "Text Input with Dynamic Abbreviation Expansion," IPSJ SIG Notes, vol. 2001, No. 87, Sep. 14, 2008, pp. 133-138, in Japanese with a partial English Translation.

Kirk Scott, Ubique's Virtual Places: Communication and interaction on the World Wide Web, 1 page, http://www.w3.org/collabroation/workshop/proceedings/p2.html, (visited Jul. 28, 2003).

Kyungkoo Jun, et al., "Agent-Based Resource Discovery", IEEE (Feb. 2000), 10 pages.

Laliberte et al., "A Protocol for Scalable Group and Public Annotations," Elsevier, Apr. 1995, pp. 911-918.

Leander Kahney, "Will You Buy a Car From This Man?", Oct. 6, 2003, pp. 1-3, available at http://www.wired.com/techbizlmedia/news/2003/10/60703.

"Learning Spam: Simple Techniques for Freely-Available Software," Bart Massey et ai, Computer Science Dept., Portland, OR USA, Apr. 2003, pp. 1-14.

"Lotus Instant Messaging Everyplace FAQ" retrieved Apr. 29, 2004 from the World Wide Web: http://www.lotus.com/products/product4nsf/wdocs/249c6f083166cd3e85256d7300714407, (3 pages).

Lieberman, H., "Letizia: An Agent that Assists Web Browsing", Aug. 20, 1995, pp. 924-929.

"Listserv Control for KnockKnock," http://www.knockmail com/supporUlistservcont.html, pp. 1, as accessed on Dec. 4, 2003.

Luis Felipe Cabrera et al., "Herald: Achieving a Global Event NotificationService", Microsoft Research, May 2001.

M. Castelluccio, "E-mail in Real Time", Strategic Finance, Sep. 1999, INSPEC p. 10.

M. Day, S Aggarwal, G Mohr, J. Vincent, RFC 2279 Instant Messaging/Presence Protocol Requirements, Feb. 2000.

M. Meola et al., "Real-Time Reference Service for the Remote User: From the Telephone and Electronic Mail to Internet Chat, Instant Messaging and Collaborative Software", Reference Librarian, Dec. 1999, INSPEC p. 8.

M. Smith et al., Conversation Trees and Threaded Chats; Collaboration & Multimedia Group, Microsoft Research, Redmond, WA, Feb. 2000.

"Managing your Addresses in Knockmail," http://www.knockmail.com/supporUmanaddresses.html, pp. 1-2, as accessed on Dec. 4, 2003.

McMurray, Susan, "Shield your children from unsuitable Internet content," http://www.microsoft.com/canada/home/internet&security/20.4.

8protectwithparentalcontrolshowtosafeguardyourcomputer.asp#, Microsoft Home Magazine, pp. 1-3, as accessed on Dec. 10, 2003. Mark Handel et al., "TeamPortal: Providing Team Awareness on the Web", Dec. 2000.

McKendrick, Joseph; "Internet Call Centers: New Era in Customer Service", Feb. 2002; VIO, n2, (4 pages).

Microservices: CommWorks Find Me-Follow Me Application; Dec. 11, 2002; commworks.com; pp. 1-2.

Microservices: CommWorks Message Alert System; Dec. 11, 2002; commworks.com; pp. 1-3.

Microservices: CommWorks Message Delivery System; Dec. 11, 2002; commworks.com; pp. 1-2.

 $Microsoft\ PressPass;\ Nov.\ 7,\ 2002;\ microsoft.com\ ;\ pp.\ 1-9.$

Mobile instant messaging through Hubbub, Issacs, E. and Walendowski, A. and Ranganathan, D., Communications of the ACM, vol. 45, No. 9, pp. 68-72, Sep. 2002, ACM Press New York, NY USA.

Midorikawa, et al., "Part 2 Build up a Comfortable Search Environment via Customization by Rules," PC Japan, vol. 7, No. 10, pp. 172-176, in Japanese with a partial English Translation of p. 172, Nov. 2002

Mozilla, www.mozilla.org/projects/ml/autocomplete, Mar. 13, 2003. Moore, J. "AOL's Grand Goal; America Online seeks to transform itself into a major Internet player," Information Week, Jul. 31, 1995, lines 7-23, pp. 38-42.

N. Liew Kwek Sing; AOL ICQ vs. MSN Messenger; Department of Electronic and Computer Science, University of Southampton, Mar. 2003.

Nardi, BA, Whittaker, S. and Bradner, E., Feb. 2000. Interaction and Outeraction: instant messaging in Action. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (Philadelphia, Pennsylvania, USA.) CSCW '00. ACM New York, NY, 79.88

Nextel Announces On-Line Paging Service Provided by Wireless Services—First Wireless Telephone Messaging Service to Offer Delivery Confirmation, Aug. 12, 1998, NY.

Net Alerts Overview; Nov. 7, 2002; microsoft.com; pp. 1-3.

Neo Mai, Ken Neo. "Buying and selling on the internet; [Computimes, 2* Edition]." New Straits Times. Kuala Lumpur: Jun. 28, 2001. p. 53.

Online! Feb. 1, 2003, pp. 1-2, XP002297111, Webpage of Slipstick Systems: To add addresses automatically to Microsoft Outlook Contacts, http://web.archive.org/web/20030201082058/http://www.slipstick.com/contacts/addauto.htm>, retrieved on Sep. 17, 2004 the whole document.

Olsen, Stefanie, "Will instant messaging become instant spamming?,". http://news.com.com/2100-1023-252765. html?legacy=cnet, Feb. 16, 2001, pp. 1-4.

Ozmosys Enterprise; Nov. 7, 2002; ozmosys.com; pp. 1-3.

"Pending Database for KnockKnock," http://www.knockmail coml support/penddatabase.html, pp. 1, as accessed on Dec. 4, 2003.

"Preview Pending Emails in KnockMail," http://www.knockmail.com/supporUpreviewemail.html, pp. 1-2, as accessed on Dec. 4, 2003.

"Protect Your Privacy," MSN Features, http://messenger.msn.com/Feature/Privacy.aspx, as accessed on Dec. 2, 2003.

Parviainen et al., "Mobile Instant Messaging", Jul. 3, 2003 IEEE.

Patrice Godefroid et al., "Ensuring Privacy in Presence Awareness Systems: An Automated Verification Approach", Feb. 2000.

Paul Mutton, "PieSpy Social Network Bot-Inferring and Visualizing Social Networks on IRC", jibble.org, http://lister.linux-srv.anlx.net/piespy, © 2001-2004, pp. 1-18, Mar. 18, 2004.

Per E. Pedersen et al.; Using the Theory of Planned Behavior to Explain Teenager's Adoption of Text Messaging Services; Agder University College, Jun. 2002.

Per E. Pedersen; The Adoption of Text Messaging services among Norwegian Teens: Development and Test of an Extended Adoption Model; SNF-Report No. 23/02; Samfunns-Og Naeringslivesforskning As Bergen, Jun. 2002.

Phillips Business Information corporation—Aug. 23, 1999—Instant messaging has emerged as one of the most popular communication mediums in the world.

Prodigy Launches 100 Interest Groups on the World Wide Web; All Sites Have Deep Links to Chat and Newsgroups; Topics Range from "Adventure Travel" and "Astrology" to "Virtual Reality" and "Wrestling" Business Wire, Sep. 27, 1995, 4 Pages.

"Plaxo—Update Your Address Book," Plaxo Contact Networks, reprinted from http://web.archive.org/web/20030218233638/http://www.plaxo.com/printed on Nov. 5, 2004 (available on Feb. 18, 2003), (1 page).

"Plaxo", Plaxo, reprinted from http://web.archive.org/web/20041105072256/http://www.plaxo.com/printed on Nov. 5, 2004 (available on Feb. 14, 2004) (2 pages).

Parent Tools TheUltimate in Monitoring and Controlling AIM "Parent Tools for AIM," http://www.parent-tools.com/screenshots.htm, pp. 1-4 as accessed on Dec. 10, 2003

pp. 1-4, as accessed on Dec. 10, 2003. "Reputation Systems," Resnick et al., Dec. 2000, Communications of the ACM, vol. 43, No. 12, pp. 45-48.

"RIM Road: Software: Internet & Network: Webmessenger RIM J2ME/Instant Messaging," retrieved Apr. 29, 2004 from the World Wide Web: http://www.rimrod.com/software/rim//Webmessenger-RIM-J2ME-Instant-Messaging-20..., pp. 1-4.

"Reflections on Friendster, Trust and Intimacy," Danah Boyd, Ubicomp 2003, Workshop Application for the Intimate Ubiquitous Computing Workshop. Seattle, WA, Oct. 12-15, 2003, (4 pages).

R. Movva & W. Lai, "MSN Messenger Service 1.0 Protocol", Aug. 1999, Internet Draft, http://toolsietf.org/id/draft-movva-msn-messenger-protocol-oo.bct, 28 pages.

OTHER PUBLICATIONS

Reichard, K., "AOL, ICO to Interoperate—But in a Limited Fashion," Oct. 30, 2002, InstantMessagingPlanet, available at www.instantmessagingplanet.com/public/article.php/1490771.

Ryze home page, www.ryze.com , Dec. 21, 2003, available at http://web.archivesorg/web/20031221010006/http://ryze.com, printed Mar. 16, 2005, 13 pages.

R. Droms, "Dynamic Host Configuration Protocol", Network Working Group, Oct. 1993.

Richard S. Hall, "The Event Desktop: Supporting Event-Enabled Clients on the Web", Freie University, Berlin. Retrieved on May 21, 2013.

Roscheisen et al., "Beyond Browsing: Shared Comments, SOAPs, Trails, and On-line Communities," Elsevier, Apr. 1995, pp. 739-749. S. Okuyana et al., "New Mobile Service Based on Instant Messaging Technology", Fujitsu, Apr. 2001, INSPEC p. 1.

S. Ortiz, Jr., "Instant Messaging: No Longer Just Chat", Computer, Mar. 2001, INSPEC p. 6.

Schulzrinne, H.; Rosenberg J., "The Session Initiation Protocol: Internet-centric signaling," Communications Magazine, IEEE, vol. 38, No. 10, pp. 134-141, Oct. 2000.

SproWuest Wireless Instant messaging (Nov. 22, 1999) InfoSpace. com, pp. 1-2.

"Six Degrees—New Programs Help Companies 'Mine Workers' Relationships for Key Business Prospects," William M. Bulkeley et al., Marketplace, THe Wall Street Journal, Aug. 4, 2003, (3 pages). SM Cherry "Talk is Cheap, Text is Cheaper" (IEEE Spectrum May 2003)

"Social Network Fragments: An Interactive Tool for Exploring Digital Social Connections." Danah Boyd, Jeff Potter. Sketch at SIG-GRAPH 2003. San Diego, California: ACM, Jul. 27-21, 2003, (1 page).

"Social Networking for Business: Release 0.5," Esther Dyson, Esther Dyson's Monthly Report, vol. 21, No. 10, Nov. 25, 2003, www. edventure.com, (36 pages).

"Support Vector Machines for Spam, Categorization," Harris Drucker et al., IEEE Transactions on Neural Networks, vol. 10, No. 5, Sep. 1999, pp. 1048-1054, (7 pages).

"Support Vector Machines," Marti Hearst, IEEE Intelligent Systems, Jul./Aug. 1998, pp. 18-28.

"Social Sites Clicking With Investors," Washingtonpost.com: Social Sites Clicking With Investors, reprinted from http://www.washingtonpost.com/ac2/wp-dyn/A32066-

2003Nov12?language=printer printed on Nov. 5, 2004, (2 pages). "Social Social Networks: Deodorant for the Soul?," Esther Dyson, Esther Dyson's Monthly Report, vol. 21, No. 11, Dec. 12, 2003, www.edventure.com, (36 pages).

"Socialware: Multiagent Systems for Supporting Network Communities," Hattori et al., Mar. 1999, Association for Computing Machinery, Communications of the ACM, vol. 42, Issue 3, (6 pages).

"Spoke Builds on Social Networking Patent Portfolio," Spoke Builds on Social Networking Patent Portfolio, reprinted from http://www.internetnews.com/ent-news/print.php/3073621 printed on Nov. 5, 2004(3 pages).

Solutions Smartdelivery; Nov. 6, 2002; centerpost.com; pp. 1-2. "SurfControl Instant Message Filter," Instant Message Filter, SurfControl pic. Apr. 2003.

"Spammers Target Instant Message Users," http://www.bizreport.com/article.php?art id=5507 Nov. 13, 2003, pp. 1-4.

"SWF Seeks Attractive Head Shot; To Stand Out, Online Daters Pay for Professional Photos; Cropping out the Ex-Wife," Leiber, Nov. 19, 2003, The Wall Street Journal, p. D.1.

"SVM-based Filtering of E-mail Spam with Content-specific Misclassification Costs," Aleksander Kolcz et al., TextDM '2001 (IEEE ICDM-2001 Workshop on Text Mining); San Jose, CA, 2001, pp. 1-14, Nov. 2001.

The Wall Street Journal article "Esniff Ferrets Out Misbehavior by 'Reading' E-Mail, Web Visits," Katherine Lange, interactive.wsj. com, Apr. 27, 2001, Tech Q&A.

The Early Report—The Early Show segment, "Big Brother in the Corner Office," Julie Chen, cbsnews.com/earlyshow/caught/techage/20001228esniff.shtml, Dec. 28, 2000: Tech Age.

"The first Social Software . . . a true Social Adventure," Huminity-Social Networking, Chat Software, Create Personal Free Blogs and My Group . . . , reprinted from http://www.humanity.com/printed on Nov. 5, 2004 (2 pages).

"The eSniff Product Overview," eSniff: Define Your e-Boundaries, www.esniff.com/product overview.html, May 15, 2001.

"Text Categorization with Support Vector Machines: Learning with Many Relevant Features," Thorsten Joachims, University of Dortmund, Computer Science Dept., LS-8 Report 23, 1998, (18 pages), Nov. 27, 1997, revised Apr. 19, 1998.

"Technology Journal-Are You Satisfied? EBay's Battle Against Fraud Rests Primarily on a Simple Concept: Customer Feedback," Wingfield, Sep. 23, 2002, Asian Wall Street Journal, p. T.8, (4 total pages).

"Technology Journal: Changing Chat-Instant Messaging is Taking Off, and for Some Users Its Nuzzling Out the Phone," Nick Wingfield, Asian WSJ, Sep. 2000, (5 pages).

"Trillian Discussion Forums-HOWTO: Import ICQ 2003a Contact List," retrieved Apr. 29, 2004 from the World Wide Web: http://trillian.cc/forums/showthread.php?s+&threadid=36475, pp. 1-2.

"Technical Solutions for Controlling Spam," Shane Hird, Proceedings of AUUG2002, Melbourne, Sep. 4-6, 2002, (17 pages).

Tara Hall, Lotus Developer Domain, "Same Place, Sametime with Chris Price", pp. 1-8, http://www.10.lotus.com/ldd/today.nsf/DisplayForm/ . . . , (Visited Jul. 28, 2003), Sep. 2002.

Teraitech; Nov. 7, 2002; teraitech.com; 1 page.

Uhara7, "Re. being invisible to all but one person on your list", alt.chat-programs.icq, Feb. 29, 2000.

Upoc Quick Tour; Nov. 6, 2002; upoc.com; pp. 1-9.

Upoc General Help; Nov. 6, 2002; upoc.com; pp. 1-2.

Upoc NYSale; Nov. 6, 2002; upoc.com; pp. 1-2.

Upoc Entertainment Picks; Nov. 6, 2002; upoc.com; pp. 1-3.

Upoc Frequently Asked Questions; Nov. 6, 2002; upoc.com; pp. 1-6. Upside, About Our Product; upsideweb.com; pp. 1-5, Nov. 2002.

V, Vittore, "The Next Dial Tone? [instant messaging]", Telephony, Oct. 16, 2000, INSPEC p. 8.

VisiblePath webpages, www.visiblepath.org, Dec. 3, 2003, available at http://web. archive.org/web/20031203132211/http://www.visiblepath.com, printed Mar. 16, 2005, 5 pages.

Walther, M., "Supporting Development of Synchronous Collaboration Tools on the Web with GroCo," Feb. 2-9, 1996, pp. 1-6.

Way-bac machine, handspring treo 270, Jun. 1, 2002.

"Wireless Instant Messaging Solution . . . " Newswire, NY Dec. 8, 1999 Atmobile corp, pp. 1-2.

WebleySystems; CommuniKate Unified Communications Features List; Dec. 11, 2002; webley.com; pp. 1-3.

"Welcome to Huminity World of Connections," Huminity-Home, reprinted from http://web.archive.org/web/20030228131435/www.humanity.com/default.php?internationa . . . printed on Nov. 5, 2004 (available on Feb. 2, 2003) (1 page).

WebmasterWorld.com Inc., "HTML and Browsers", Mar. 5, 2001, Internet: www.webmaster.com/forum21/637.htm, (2 pages).

www.yahoo.com, Yahoo! Messenger for Text Messaging, Jul. 2002. Yiva Hard of Segerstad et al.; Awareness of Presence, Instant Messaging and WebWho; Department of Linguistics, Goteborg University; Sweden, Dec. 2000.

Yahoo! Buzz Index, Feb. 13, 2003, 1 page, http://buzz.yahoo.com/overall/.

Yahoo! Buzz Index, Nov. 10, 2002, 1 page.

Yahoo! Messenger, "Messenger Help," (4 total pages) Nov. 2002.

ZeroDegrees home p., www.zerodegrees.com , Jan. 24, 2004, available at http://web.archive.org/web/20040204153037/www.zerosdegrees.com/home.htm, printed Mar. 16, 2005, 16 pages.

Zephyr on Athena (AC-34), http://web.mit.edu/olh//Zephyr/Revision.html, 11 pages, Retrieved on May 17, 2013.

European Search Report, European Application No. 03781972.9-2201, dated Feb. 8, 2008, 5 pages.

OTHER PUBLICATIONS

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2004/029291; Dec. 27/, 2005; 9

English translation of an Office Action issued in corresponding Japanese Application No. 2004-570418 on Aug. 7, 2008.

English translation of an Office Action issued in corresponding Japanese Application No. 2004-570418 on Feb. 5, 2009.

International Search Report and Written Opinion dated Feb. 15, 2006 for International Application No. PCT/US05/07204, (10 pages).

International Search Report and Written Opinion issued in International Application No. PCT/US05/45663, dated Apr. 11, 2008.

International Search Report issued in Application Serial No. PCT/ US05/08476, dated Oct. 16, 2006, (3 pages).

International Search Report issued in International Application No. EP03731244, dated Aug. 30, 2005, (4 pages).

Supplementary European Search Report issued in European Application No. EP05728303, dated Jan. 9, 2009 (4 pages).

Supplementary European Search Report issued in European Application No. 05857099.5-51238/1836596, PCT/US2005045663, dated Nov. 7, 2008, (5 pages).

International Search Report, PCT/US03/36656, dated Apr. 22, 2004. Supplementary European Search Report dated Jun. 7, 2006 for Application No. EP 03811631, 3 pages.

Notification of Transmittal of the International Search Report or the Declaration dated Jun. 23, 2004 for International Application Serial No. PCT/US03/36795.

Office Action issued in Chinese Application No. 200480013443.9, mailed Mar. 6, 2009, 20 pages, including English translation.

Office Action mailed Apr. 21, 2005 for European Application No. 97946924.4-1238, 6 pages.

Office Action mailed May 21, 2008 for European Application No. 97946924.4-1238, 10 pages.

International Search Report and Written Opinion for International Application No. PCT/US05/45630, Dated Oct. 23, 2006.

International Search Report dated Jan. 27, 2005 for International Application No. PCT U52004/009422, International Filing Date Mar. 26, 2004.

International Search Report issued in International Application No. PCT/US03/36795 mailed Jun. 23, 2004, 9 Pages.

International Search Report mailed Dec. 27, 2005 for International Application No. PCT/US2004/29291, filed Sep. 8, 2004.

International Search Report, Application Serial No. PCT/US04/ 23382, dated Feb. 1, 2007, 12 pages

International Search Report of PCT/US03/36654 dated Aug. 17,

International Standard, Information technology-telecommunications and information exchange between systems-private integrated services network-specifications, functional model and information flows-short message service, ISO/IEC21989, Jul. 1, 2002.

European Office Communication issued in Application No. EP 97946924.4-1238 mailed Apr. 5, 2007, 7 pages.

European Oral Proceedings issued in Application No. EP 97946924. 4-1238 mailed Feb. 6, 2007, 9 pages.

European Oral Proceedings issued in Application No. EP 97946924. 4-1238 mailed Oct. 7, 2007, 8 pages.

European Office Action, Application Serial No. 03 811 631.5-2201, dated Oct. 4, 2006, 4 pages.

European Search Report, Application No. EP 03811631, dated Jun. 23, 2006, 5 pages.

Office Action from the Canadian Intellectual Property Office in corresponding Canadian Application No. 2,506,417, dated Aug. 14, 2007, 3 pages.

Written Opinion dated Jan. 27, 2005 for International Application No. PCT/US2004/009422, International Filing Date Mar. 26, 2004. Written Opinion mailed Dec. 27, 2005 for International Application No. PCT/US2004/29291, filed Sep. 8, 2004.

U.S. Appl. No. 10/146,814, Dec. 11, 2006, Office Action.

U.S. Appl. No. 10/146,814, Jul. 2, 2007, Office Action.

U.S. Appl. No. 10/184,002, Jan. 9, 2007, Office Action.

U.S. Appl. No. 10/334,056, Nov. 29, 2004, Office Action.

U.S. Appl. No. 10/334,056, Jul. 6, 2005, Office Action.

U.S. Appl. No. 10/334,056, Oct. 31, 2005, Office Action.

U.S. Appl. No. 10/334,056, May 10, 2006, Office Action.

U.S. Appl. No. 10/334,056, May 21, 2007, Office Action.

U.S. Appl. No. 10/334,056, Nov. 5, 2007, Office Action.

U.S. Appl. No. 10/334,056, May 12, 2008, Office Action.

U.S. Appl. No. 10/334,056, Oct. 30, 2008, Office Action.

U.S. Appl. No. 10/633,636, Oct. 11, 2006, Office Action.

U.S. Appl. No. 10/651,303, Feb. 9, 2007 Office Action.

U.S. Appl. No. 10/651,303, Apr. 28, 2008, Office Action.

U.S. Appl. No. 10/651,303, Oct. 8, 2008, Office Action. U.S. Appl. No. 10/651,303, May 1, 2009, Office Action.

U.S. Appl. No. 10/651,303, Nov. 27, 2009, Office Action. U.S. Appl. No. 10/651,303, Mar. 11, 2011, Notice of Allowance.

U.S. Appl. No. 10/715,206, Sep. 27, 2007, Office Action.

U.S. Appl. No. 10/715,206, Jul. 25, 2008, Notice of Allowance.

U.S. Appl. No. 10/715,206, Jan. 27, 2009, Office Action.

U.S. Appl. No. 10/715,206, Aug. 13, 2009, Notice of Allowance.

U.S. Appl. No. 10/715,210, Sep. 27, 2007, Office Action. U.S. Appl. No. 10/715,210, Apr. 14, 2008, Office Action.

U.S. Appl. No. 10/715,210, May 13, 2009, Office Action.

U.S. Appl. No. 10/715,210, Mar. 29, 2010, Notice of Allowance.

U.S. Appl. No. 10/715,211, Jan. 8, 2008, Office Action.

U.S. Appl. No. 10/715,211, Jul. 11, 2008, Office Action.

U.S. Appl. No. 10/715,211, Nov. 28, 2008, Office Action.

U.S. Appl. No. 10/715,211, Jun. 24, 2009, Office Action.

U.S. Appl. No. 10/715,211, Oct. 2, 2009, Notice of Allowance.

U.S. Appl. No. 10/715,211, Feb. 3, 2010, Office Action.

U.S. Appl. No. 10/715,211, Jul. 14, 2010, Office Action. U.S. Appl. No. 10/715,211, Oct. 25, 2010, Notice of Allowance.

U.S. Appl. No. 10/715,213, Apr. 26, 2007, Office Action. U.S. Appl. No. 10/715,213, Oct. 22, 2007, Office Action.

U.S. Appl. No. 10/715,213, Aug. 7, 2008, Office Action.

U.S. Appl. No. 10/715,213, Feb. 5, 2009, Office Action.

U.S. Appl. No. 10/715,213, Aug. 6, 2009, Office Action. U.S. Appl. No. 10/715,213, Jul. 18, 2013, Office Action.

U.S. Appl. No. 10/715,214, Apr. 20, 2007, Office Action.

U.S. Appl. No. 10/715,214, Oct. 9, 2007, Office Action.

U.S. Appl. No. 10/715,215, Mar. 23, 2007, Office Action. U.S. Appl. No. 10/715,215, Aug. 20, 2007, Office Action.

U.S. Appl. No. 10/715,215, Nov. 20, 2010, Notice of Allowance.

U.S. Appl. No. 10/715,216, Feb. 12, 2007 Office Action.

U.S. Appl. No. 10/715,216, Jan. 11, 2008, Office Action. U.S. Appl. No. 10/715,216, Aug. 18, 2009, Office Action.

U.S. Appl. No. 10/723,040, Mar. 14, 2006, Office Action.

U.S. Appl. No. 10/723,040, Jun. 26, 2006, Office Action.

U.S. Appl. No. 10/723,040, Jan. 4, 2007, Office Action.

U.S. Appl. No. 10/723,040, Jun. 4, 2007 Office Action.

U.S. Appl. No. 10/723,040, Oct. 25, 2007, Office Action.

U.S. Appl. No. 10/723,040, May 21, 2008, Notice of Allowance.

U.S. Appl. No. 10/746,230, Mar. 17, 2009, Office Action.

U.S. Appl. No. 10/746,232, Mar. 18, 2009, Office Action.

U.S. Appl. No. 10/747,263, Mar. 5, 2008 Office Action.

U.S. Appl. No. 10/747,263, Sep. 5, 2008, Office Action.

U.S. Appl. No. 10/747,263, Feb. 11, 2009, Notice of Allowance.

U.S. Appl. No. 10/747,263, Jun. 2, 2009, Notice of Allowance.

U.S. Appl. No. 10/747,651, Mar. 5, 2008, Office Action.

U.S. Appl. No. 10/747,651, Feb. 20, 2009, Office Action.

U.S. Appl. No. 10/747,676, Sep. 21, 2007, Office Action.

U.S. Appl. No. 10/747,676, Mar. 31, 2008, Office Action. U.S. Appl. No. 10/747,678, Sep. 14, 2007, Office Action.

U.S. Appl. No. 10/747,678, Mar. 27, 2008, Office Action.

U.S. Appl. No. 10/747,678, Jun. 12, 2008, Office Action.

U.S. Appl. No. 10/747,678, Dec. 15, 2008, Office Action.

U.S. Appl. No. 10/747,678, Jun. 5, 2009, Notice of Allowance.

U.S. Appl. No. 10/747,678, Jun. 19. 2009, Notice of Allowance.

U.S. Appl. No. 10/747,682, Oct. 11, 2007, Office Action.

U.S. Appl. No. 10/747,682, Apr. 7, 2008, Office Action.

U.S. Appl. No. 10/747,682, Aug. 19, 2008, Office Action. U.S. Appl. No. 10/747,682, Mar. 18, 2009, Office Action.

U.S. Appl. No. 10/747,682, Nov. 2, 2009, Office Action.

OTHER PUBLICATIONS

```
U.S. Appl. No. 10/747,682, Jun. 11, 2010, Office Action.
U.S. Appl. No. 10/747,682, Dec. 2, 2010, Office Action.
U.S. Appl. No. 10/747,682, Oct. 5, 2011, Notice of Allowance.
U.S. Appl. No. 10/825,617, Jun. 24, 2008, Office Action.
U.S. Appl. No. 10/825,617, Mar. 9, 2009, Notice of Allowance.
U.S. Appl. No. 10/825,617, Sep. 10, 2009, Notice of Allowance.
U.S. Appl. No. 10/895,421, Jan. 9, 2007, Office Action.
U.S. Appl. No. 10/895,421, Jun. 27, 2007, Office Action.
U.S. Appl. No. 10/895,421, Apr. 16, 2008, Office Action.
U.S. Appl. No. 10/895,421, Nov. 19, 2008, Notice of Allowance.
U.S. Appl. No. 10/895,421, Apr. 17, 2009, Notice of Allowance.
U.S. Appl. No. 10/974,969, Mar. 17, 2008, Office Action.
U.S. Appl. No. 10/974,969, Mar. 6, 2009, Office Action.
U.S. Appl. No. 10/974,969, Sep. 8, 2009, Notice of Allowance.
U.S. Appl. No. 10/981,460, Aug. 20, 2008, Office Action.
U.S. Appl. No. 11/015,423, Mar. 2, 2009, Office Action.
U.S. Appl. No. 11/015,424, Mar. 19, 2008, Office Action.
U.S. Appl. No. 11/015,424, May 1, 2009, Office Action.
U.S. Appl. No. 11/015,476, Mar. 2, 2009, Office Action.
U.S. Appl. No. 11/017,204, Dec. 12, 2007, Office Action.
U.S. Appl. No. 11/017,204, Aug. 23, 2008, Office Action.
U.S. Appl. No. 11/023,652, Aug. 30, 2010, Office Action.
U.S. Appl. No. 11/023,652, May 12, 2011, Office Action.
U.S. Appl. No. 11/023,652, Dec. 8, 2011, Office Action.
U.S. Appl. No. 11/023,652, Sep. 24, 2012, Office Action.
U.S. Appl. No. 11/023,652, Oct. 25, 2013, Office Action.
U.S. Appl. No. 11/079,522, Oct. 16, 2008, Office Action.
U.S. Appl. No. 11/079,522, Apr. 3, 2009, Office Action.
U.S. Appl. No. 11/237,718, Apr. 2, 2009, Office Action.
U.S. Appl. No. 11/408,166, Mar. 18, 2009, Office Action.
U.S. Appl. No. 11/408,166, Oct. 7, 2009, Office Action.
U.S. Appl. No. 11/408,166, Sep. 2, 2010, Office Action.
U.S. Appl. No. 11/408,166, Apr. 13, 2011, Office Action.
U.S. Appl. No. 11/408,166, Oct. 17, 2011, Office Action.
U.S. Appl. No. 11/464,816, Apr. 21, 2009, Office Action.
U.S. Appl. No. 11/574,831, Sep. 18, 2009, Office Action.
U.S. Appl. No. 11/574,831, May 16, 2010, Office Action.
U.S. Appl. No. 11/574,831, Sep. 9, 2010, Office Action.
U.S. Appl. No. 11/574,831, Apr. 15, 2011, Office Action.
U.S. Appl. No. 11/574,831, Oct. 13, 2011, Notice of Allowance.
U.S. Appl. No. 12/236,255, Apr. 2, 2010, Office Action.
U.S. Appl. No. 12/236,255, Sep. 17, 2010, Office Action.
U.S. Appl. No. 12/236,255, Feb. 3, 2011, Office Action.
U.S. Appl. No. 12/548,338, Nov. 9, 2010, Office Action.
U.S. Appl. No. 12/548,338, May 19, 2011, Office Action.
U.S. Appl. No. 12/548,338, Dec. 9, 2011, Notice of Allowance.
U.S. Appl. No. 12/626,099, Sep. 17, 2010, Office Action.
U.S. Appl. No. 12/626,099, Mar. 20, 2011, Notice of Allowance.
U.S. Appl. No. 12/689,699, Feb. 28, 2011, Office Action.
U.S. Appl. No. 12/689,699, Apr. 23, 2012, Office Action.
U.S. Appl. No. 12/689,699, Oct. 9, 2012, Notice of Allowance.
U.S. Appl. No. 12/689,699, Mar. 11, 2013, Office Action.
U.S. Appl. No. 12/689,699, Jun. 18, 2013, Notice of Allowance.
U.S. Appl. No. 13/023,256, Jun. 21, 2011, Office Action.
U.S. Appl. No. 13/023,256, Nov. 28, 2011, Office Action.
U.S. Appl. No. 13/023,256, Apr. 16, 2012, Office Action.
U.S. Appl. No. 13/023,256, Sep. 28, 2012, Office Action.
U.S. Appl. No. 13/023,256, Jun. 21, 2013, Office Action.
U.S. Appl. No. 13/023,256, Nov. 7, 2013, Office Action.
U.S. Appl. No. 13/048,312, Nov. 22, 2011, Office Action.
U.S. Appl. No. 13/048,312, Mar. 13, 2012, Notice of Allowance.
U.S. Appl. No. 13/184,414, Aug. 17, 2012, Notice of Allowance.
U.S. Appl. No. 13/184,414, Nov. 28, 2012, Notice of Allowance.
U.S. Appl. No. 13/184,414, Jan. 29, 2013, Notice of Allowance.
U.S. Appl. No. 13/189,972, Oct. 29, 2013, Office Action.
U.S. Appl. No. 13/189,972, Jul. 24, 2013, Office Action.
U.S. Appl. No. 13/189,972, Dec. 21, 2012, Office Action.
U.S. Appl. No. 13/189,972, Aug. 22, 2012, Notice of Allowance.
```

U.S. Appl. No. 13/189,972, May 7, 2012, Office Action.

```
U.S. Appl. No. 13/189,972, Jan. 5, 2012, Office Action.
U.S. Appl. No. 13/189,972, Sep. 2, 2011, Office Action.
U.S. Appl. No. 13/372,371, May 9, 2013, Office Action.
U.S. Appl. No. 13/507,429, Oct. 25, 2013, Office Action.
U.S. Appl. No. 13/614,640, Oct. 2, 2013, Office Action.
U.S. Appl. No. 13/614,781, Jun. 4, 2013, Office Action.
U.S. Appl. No. 13/614,781, Sep. 12, 2013, Office Action.
U.S. Appl. No. 13/617,270, Sep. 12, 2013, Office Action.
U.S. Appl. No. 13/617,330, Sep. 12, 2013, Office Action.
U.S. Appl. No. 13/619,009, Mar. 7, 2013, Office Action.
U.S. Appl. No. 13/619,009, Sep. 19, 2013, Office Action.
U.S. Appl. No. 13/619,036, Mar. 26, 2013, Office Action.
U.S. Appl. No. 13/619,036, Sep. 16, 2013, Office Action.
U.S. Appl. No. 13/619,054, Mar. 26, 2013, Office Action.
U.S. Appl. No. 13/619,054, Oct. 10, 2013, Office Action.
U.S. Appl. No. 13/620,851, Feb. 8, 2013, Office Action.
U.S. Appl. No. 13/620,853, Feb. 13, 2013, Office Action.
U.S. Appl. No. 13/620,856, Feb. 13, 2013, Office Action.
U.S. Appl. No. 13/361,141, Mar. 19, 2013, Office Action.
U.S. Appl. No. 13/361,141, Aug. 15, 2013, Office Action.
U.S. Appl. No. 13/729,318, Sep. 18, 2013, Office Action.
U.S. Appl. No. 13/755,990, Oct. 2, 2013, Office Action.
U.S. Appl. No. 13/766,775, Sep. 19, 2013, Office Action.
U.S. Appl. No. 13/766,779, Oct. 15, 2013, Office Action.
U.S. Appl. No. 10/715,213, Dec. 6, 2013, Notice of Allowance.
U.S. Appl. No. 13/372,371, Nov. 29, 2013, Office Action.
U.S. Appl. No. 13/614,640, Jan. 31, 2014, Office Action.
U.S. Appl. No. 13/614,781, Dec. 26, 2013, Office Action.
U.S. Appl. No. 13/620,851, Nov. 29, 2013, Office Action.
U.S. Appl. No. 13/620,853, Jan. 9, 2014, Office Action.
U.S. Appl. No. 13/620,856, Jan. 9, 2014, Office Action.
U.S. Appl. No. 13/361,141, Jan. 17, 2014, Office Action.
U.S. Appl. No. 13/731,124, Dec. 6, 2013, Office Action.
U.S. Appl. No. 13/755,990, Jan. 29, 2014, Office Action.
U.S. Appl. No. 13/766,781, Nov. 27, 2013, Office Action.
U.S. Appl. No. 13/766,785, Nov. 29, 2013, Office Action.
U.S. Appl. No. 13/766,786, Nov. 27, 2013, Office Action.
U.S. Appl. No. 13/679,988, filed Nov. 16, 2012, Mantegna et al.
Alan Cohen, "Instant Messaging", Apr. 13, 1999, PC Magazine, PC
"AOL Instant Messenger Windows Beta Features", Jun. 24, 1999, 2
pages, AOL Instant Messenger All New Version 2.0, 2 pages, Jun. 24,
1999, What is AOL Instant Messenger, 3 pages, Jun. 24, 1999, Quick
Tips for Getting Started, 5 pages, Jun. 24, 1999, Frequently Asked
Questions About AOL Instant Messenger, 6 pages, Jun. 24, 1999.
Hodson, O., Perkins, C., Hardman, V. "Skew detection and compen-
sation for Internet audio applications" ICME 2000, Jul. 2000, vol. 3,
pp. 1687-1690.
Itakura, F.; Saito, S.; Koike, T.; Sawabe, H.; Nishikawa, M.; An Audio
Response Unit Based on Partial Autocorrelation Communications,
IEEE Transactions on [legacy, pre-1988], vol. 20, Issue: 4, Aug.
1972, pp. 792-797.
J.S. Erkelens and P.M.T. Broersen, "Bias Propagation in the Autocor-
relation Method of Linear Prediction", IEEE Transactions on Speech
and Audio Processing, vol. 5, No. 2, pp. 116-119, Mar. 1997.
"Knowledge Pump: Community-centered Collaborative Filtering," published Oct. 27, 1997, authored by Natalie Glance, Damian
Arregui, and Manfred Dardenne.
"Making Recommender Systems Work for Organizations," pub-
lished Apr. 1999 by "Proceedings of PAAM '99," authored by
Nathalie Glance, Damian Arregui, and Manfred Dardenne.
Microstrategy, Inc., "MicroStrategy Launches Strategy.com, the
World's First Personal Intelligence Network," press release dated
Jun. 28, 1999.
"Siteseer: Personalized Navigation for the Web," published Mar.
1997 in Communications of the ACM (vol. 40, No. 3), authored by
James Rucker and Marcos J. Polanco
"webCobra: An Automated Collaborative Filtering Agent System for
the World Wide Web," published Dec. 5, 1997, authored by Steve
```

"YAHOO! Messenger Makes the World a Little Smaller, More

Informed", pp. 1-2, Jun. 21, 1999.

OTHER PUBLICATIONS

International Search Report dated Oct. 18, 2001 as received in PCT/ U.S. Appl. No. 09/624,191, Jul. 16 2003, Office Action. U.S. Appl. No. 09/624,191, Apr. 7, 2004, Office Action. U.S. Appl. No. 09/624,191, Feb. 22, 2005, Office Action. U.S. Appl. No. 09/624,191, Jul. 13, 2005, Office Action. U.S. Appl. No. 09/624,191, Jan. 30, 2006, Office Action. U.S. Appl. No. 09/624,191 Jul. 18, 2006, Office Action. U.S. Appl. No. 09/624,191, May 2, 2007, Office Action. U.S. Appl. No. 09/624,191, Oct. 14, 2007, Notice of Allowance. U.S. Appl. No. 09/624,192, Dec. 4, 2003, Office Action. U.S. Appl. No. 09/624,192, May 13, 2004, Office Action. U.S. Appl. No. 09/624,192, Jul. 14, 2005, Office Action. U.S. Appl. No. 09/624,192, Feb. 8, 2006, Office Action. U.S. Appl. No. 09/624,192, Aug. 23, 2006, Office Action. U.S. Appl. No. 09/624,192, May, 16, 2007, Office Action. U.S. Appl. No. 09/624,192, Nov. 11, 2007, Office Action. U.S. Appl. No. 09/624,192, Sep. 5, 2008, Office Action. U.S. Appl. No. 09/624,192, Mar. 5, 2009, Office Action. U.S. Appl. No. 09/624,192, Jul. 10, 2009, Notice of Allowance. U.S. Appl. No. 09/844,656, Jun. 15, 2004, Office Action. U.S. Appl. No. 09/844,656, Mar. 9, 2005, Office Action. U.S. Appl. No. 09/844,656, Aug. 12, 2005, Office Action. U.S. Appl. No. 09/844,656, Dec. 7, 2005, Notice of Allowance. U.S. Appl. No. 09/845,083, May 25, 2004, Office Action. U.S. Appl. No. 09/845,083, May 20, 2005, Office Action. U.S. Appl. No. 09/845,083, Oct. 13, 2005, Office Action. U.S. Appl. No. 09/845,083, Apr. 6, 2006, Office Action. U.S. Appl. No. 09/845,083, Jun. 22, 2006, Office Action. U.S. Appl. No. 09/845,083, Feb. 8, 2007, Office Action U.S. Appl. No. 09/845,083, Jun. 1, 2007, Notice of Allowance. U.S. Appl. No. 09/845,084, Jun. 9, 2004, Office Action. U.S. Appl. No. 09/845,084, Mar. 30, 2005, Office Action. U.S. Appl. No. 09/845,084, Oct. 20, 2005, Office Action. U.S. Appl. No. 09/845,084, Apr. 5, 2006, Office Action. U.S. Appl. No. 09/845,084, Oct. 19, 2006, Office Action. U.S. Appl. No. 09/845,084, Feb. 8, 2007, Notice of Allowance. U.S. Appl. No. 11/023,652, Apr. 29, 2014, Office Action. U.S. Appl. No. 11/760,204, Dec. 26, 2008, Office Action. U.S. Appl. No. 11/760,204, Jun. 3, 2009, Notice of Allowance. U.S. Appl. No. 11/868,114, Jun. 15, 2009, Office Action. U.S. Appl. No. 11/868,114, Jan. 7, 2010, Office Action. U.S. Appl. No. 11/868,114, Mar. 15, 2010, Notice of Allowance. U.S. Appl. No. 11/868,114, Jun. 24, 2010, Notice of Allowance. U.S. Appl. No. 12/615,136, Nov. 26, 2010, Office Action. U.S. Appl. No. 12/615,136, May 11, 2011, Office Action.

U.S. Appl. No. 12/615,136, Oct. 25, 2011, Office Action.

U.S. Appl. No. 12/615,136, Apr. 12, 2012, Office Action. U.S. Appl. No. 12/615,136, Dec. 24, 2012, Notice of Allowance. U.S. Appl. No. 12/615,136, Apr. 24, 2013, Notice of Allowance. U.S. Appl. No. 13/189,972, Apr. 21, 2014, Office Action. U.S. Appl. No. 13/189,972, Oct. 2, 2014, Office Action. U.S. Appl. No. 13/189,972, May 8, 2015, Office Action. U.S. Appl. No. 13/372,371, Mar. 26, 2014, Office Action. U.S. Appl. No. 13/372,371, Jul. 1, 2014, Notice of Allowance. U.S. Appl. No. 13/442,226, Apr. 14, 2014, Office Action. U.S. Appl. No. 13/507,429, Mar. 28, 2014, Office Action. U.S. Appl. No. 13/614,640, Jun. 11, 2014, Notice of Allowance. U.S. Appl. No. 13/614,781, Apr. 2, 2014, Office Action. U.S. Appl. No. 13/616,359, Mar. 31, 2015, Office Action. U.S. Appl. No. 13/616,369, Nov. 6, 2014, Office Action. U.S. Appl. No. 13/616,380, Nov. 6, 2014, Office Action. U.S. Appl. No. 13/617,270, Apr. 10, 2014, Office Action. U.S. Appl. No. 13/617,270, Dec. 4, 2014, Office Action. U.S. Appl. No. 13/617,270, Apr. 17, 2015, Office Action. U.S. Appl. No. 13/617,330, Apr. 8, 2014, Office Action. U.S. Appl. No. 13/617,330, Dec. 1, 2014, Office Action. U.S. Appl. No. 13/619,009, Mar. 12, 2014, Notice of Allowance. U.S. Appl. No. 13/619,009, Apr. 11, 2014, Notice of Allowance. U.S. Appl. No. 13/619,036, Mar. 21, 2014, Office Action. U.S. Appl. No. 13/619,054, Apr. 7, 2014, Office Action. U.S. Appl. No. 13/620,851, Apr. 8, 2014, Office Action. U.S. Appl. No. 13/620,862, Jul. 24, 2014, Office Action. U.S. Appl. No. 13/620,863, Aug. 1, 2014, Office Action. U.S. Appl. No. 13/620,865, Aug. 6, 2014, Office Action. U.S. Appl. No. 13/729,318, Feb. 5, 2014, Office Action. U.S. Appl. No. 13/731,124, Jun. 30, 2014, Office Action. U.S. Appl. No. 13/731,124, Mar. 12, 2015, Office Action. U.S. Appl. No. 13/755,990, May 16, 2014, Notice of Allowance. U.S. Appl. No. 13/766,775, Mar. 24, 2014, Office Action. U.S. Appl. No. 13/766,775, Dec. 5, 2014, Office Action. U.S. Appl. No. 13/766,775, May 6, 2015, Office Action. U.S. Appl. No. 13/766,779, Apr. 11, 2014, Office Action. U.S. Appl. No. 13/766,779, Dec. 4, 2014, Office Action. U.S. Appl. No. 13/766,781, May 6, 2014, Office Action. U.S. Appl. No. 13/766,781, Dec. 24, 2014, Office Action. U.S. Appl. No. 13/766,785, May 14, 2014, Office Action. U.S. Appl. No. 13/766,785, Jan. 30, 2015, Office Action. U.S. Appl. No. 13/766,786, May 8, 2014, Office Action. U.S. Appl. No. 13/766,786, Oct. 1, 2014, Office Action. U.S. Appl. No. 13/766,786, Apr. 8, 2015, Office Action. U.S. Appl. No. 13/800,946, Apr. 22, 2015, Office Action. U.S. Appl. No. 14/586,850, Apr. 8, 2015, Office Action. U.S. Appl. No. 13/725,422, Apr. 8, 2015, Office Action. U.S. Appl. No. 13/766,781, mailed Jul. 9, 2015, Office Action.

U.S. Appl. No. 13/800,786, mailed Jul. 28, 2015, Office Action.

^{*} cited by examiner

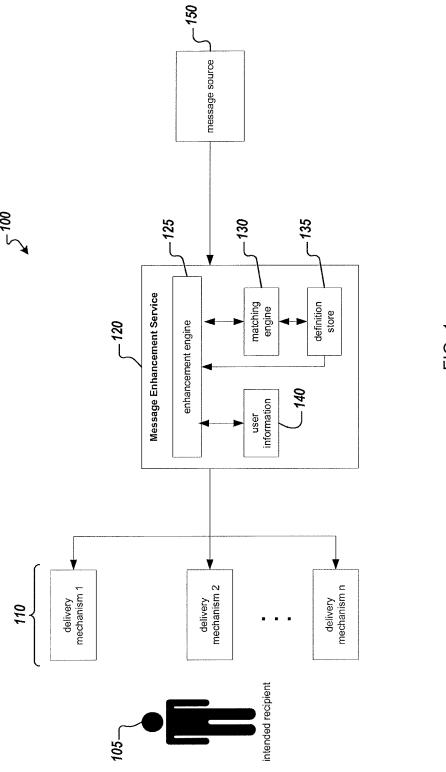


FIG. 1

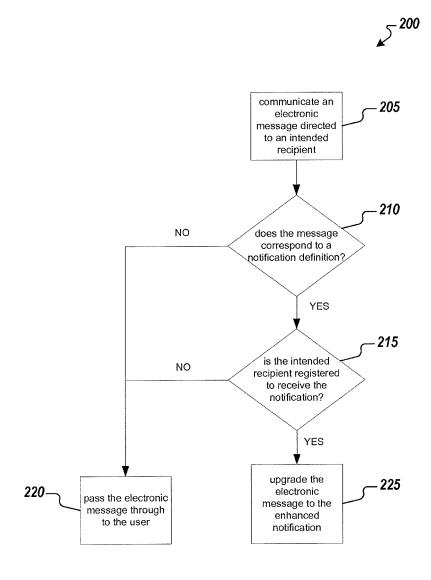
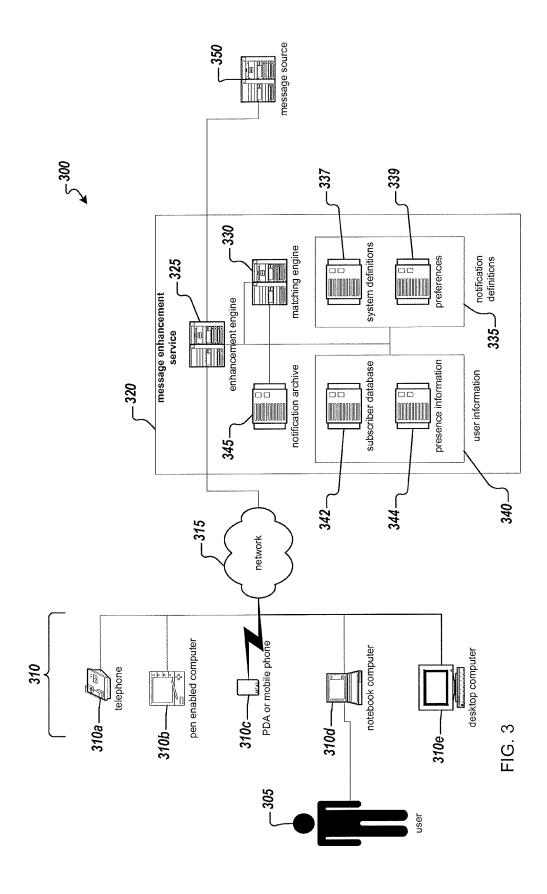
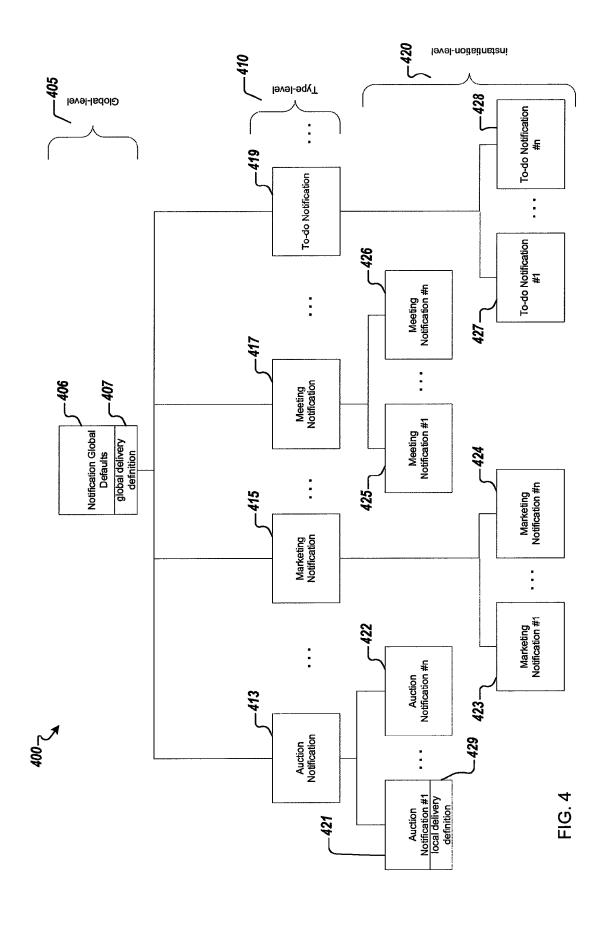




FIG. 2

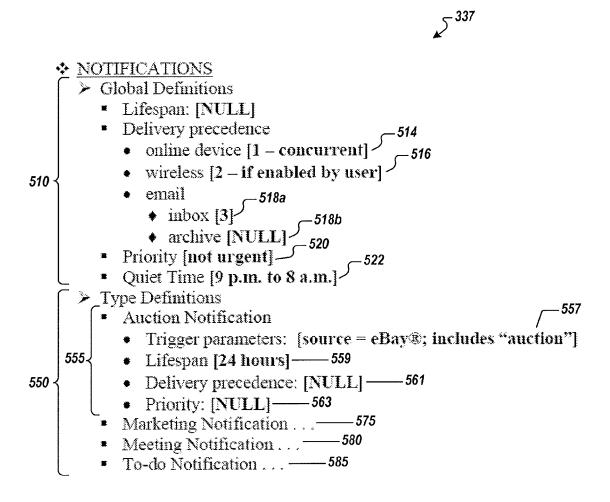


FIG. 5

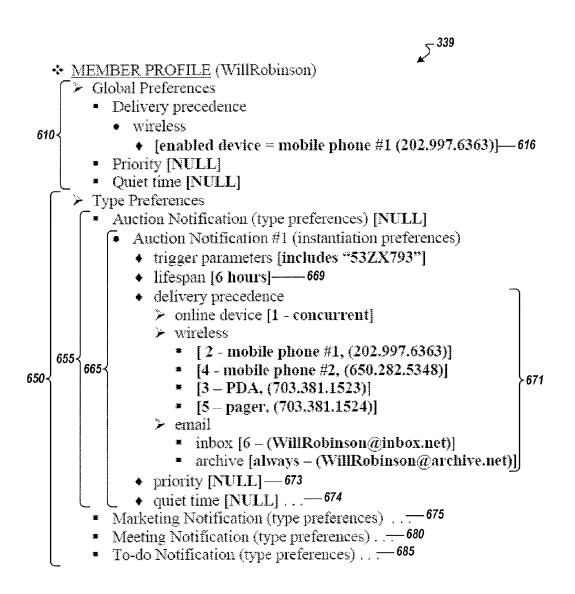


FIG. 6

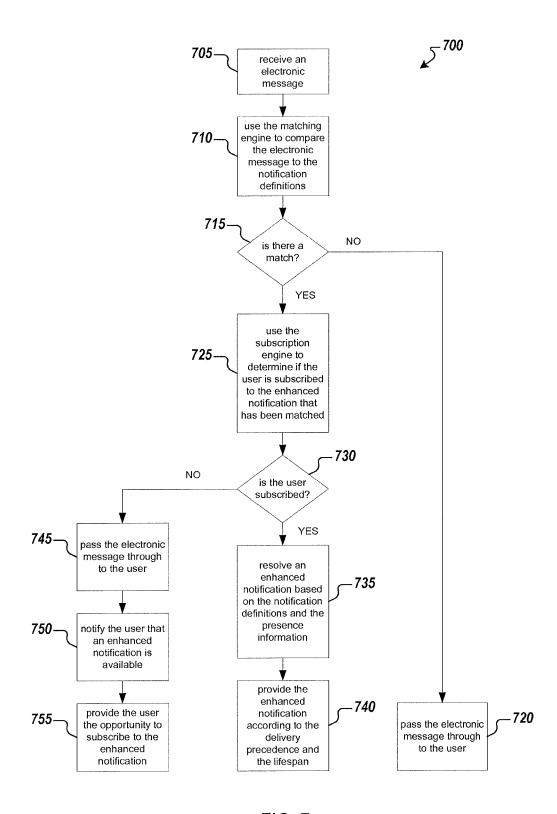
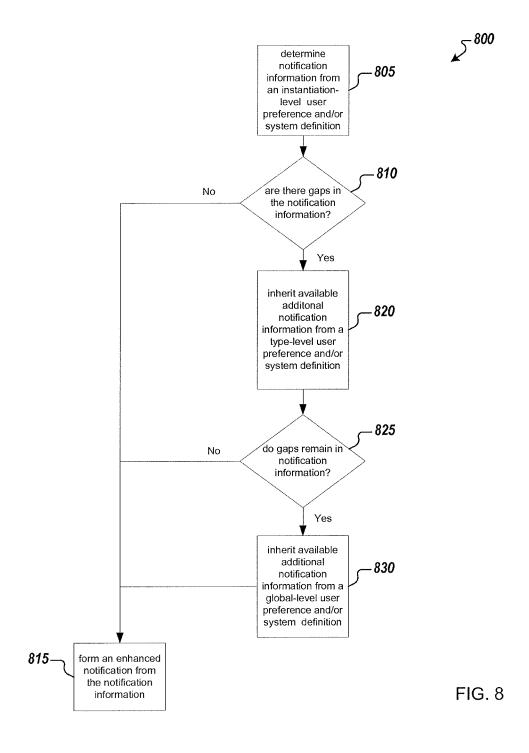
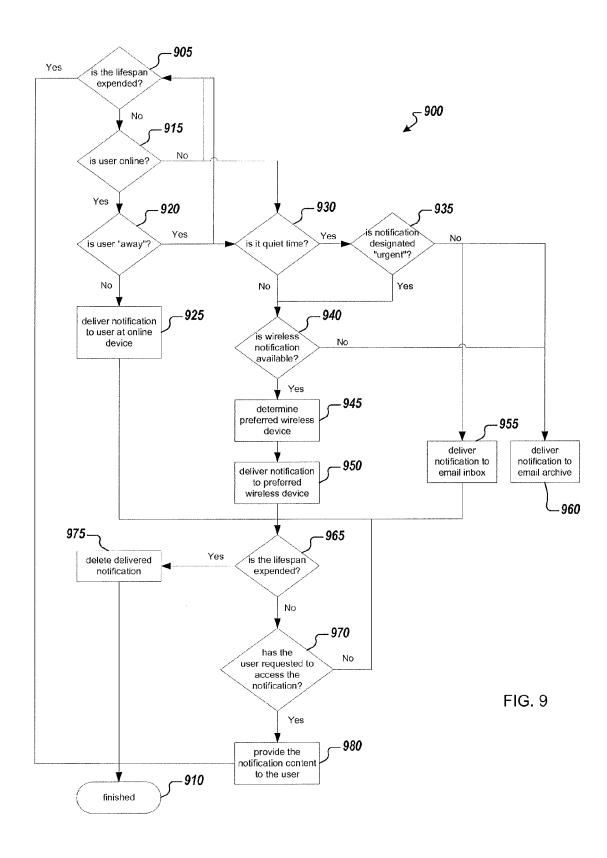




FIG. 7

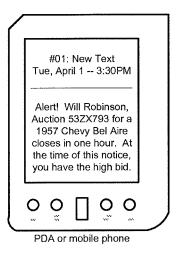


FIG. 10

SYSTEMS AND METHODS FOR RECONFIGURING ELECTRONIC MESSAGES

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/189,972 filed on Jul. 25, 2011, which is a continuation of U.S. application Ser. No. 12/626,099 filed on Nov. 25, 2009 and now issued as U.S. Pat. No. 8,001,199, which is a continuation of U.S. application Ser. No. 10/715,206, filed Nov. 18, 2003, which claims the benefit of U.S. Provisional Application No. 60/428,234, filed Nov. 22, 2002; and U.S. Provisional Application No. 60/426,806, filed Nov. 18, 2002. The content of all of the prior applications is hereby incorporated by reference in its entirety for all purposes.

TECHNICAL FIELD

This disclosure generally relates to systems and methods of 20 reconfiguring an electronic communication to effect an enhanced notification.

BACKGROUND

Online service providers may desire to inform their users of a wide range of information and services regarding, for example, news, weather, auctions, commercial offerings, stocks, banking, sports scores, and entertainment offerings. Many of these services and much of the information may be time sensitive or may benefit from special handling, routing or presentation. The online service providers may communicate their time sensitive offerings using emails or other basic electronic messages. For lack of individual expertise or infrastructure, the electronic messages of the online service providers may lack functionality desirable to communicate with the users in a timely and effective fashion.

SUMMARY

In one general aspect, a system reconfigures an electronic message to effect an enhanced notification using an input interface to receive at least one electronic message created by or on behalf of a message source for delivery to an intended recipient. A matching engine determines whether the electronic message corresponds to a predetermined definition of an enhanced notification. An enhancement engine reconfigures the electronic message to the enhanced notification if stored information related to the intended recipient indicates that the intended recipient is subscribed to receive the 50 enhanced notification.

Implementations may include one or more of the following features. For example, the system may match the electronic message to the predetermined definition of the enhanced notification based on a source and a content of the electronic 55 message. Moreover, the system may enable the intended recipient to access the electronic message by interacting with the enhanced notification.

The system may include a subscriber engine that stores subscriber information associated with the intended recipient. The subscriber engine also may subscribe the intended recipient to the enhanced notification if the intended recipient already is not subscribed.

The information related to the intended recipient may include presence information. The presence information may 65 indicate an online presence, a device presence, and/or a physical presence of the intended recipient at a time at which the

2

enhancement engine is preparing to provide the enhanced notification to the intended recipient. The presence information may indicate a delivery mechanism associated with the online presence of the intended recipient and that the intended recipient physically is present within a predefined distance of that or another delivery mechanism.

The definition of the enhanced notification may include a system definition and a preference of the intended user. The definition of the enhanced notification may include a data structure appropriate to accommodate the system definition and the preference of the intended recipient. The definition of the enhanced notification also may include a delivery definition and a lifespan.

The delivery definition may include, for example, a cascaded delivery definition. The cascaded delivery definition may list several delivery mechanisms that are candidates for delivery (e.g., an email client, an instant messaging client, a mobile device, a desktop computer) and may be used in conjunction with presence information to determine a delivery mechanism that appears available to provide the enhanced notification to the intended recipient without significant delay.

The lifespan includes a time period during which information of the enhanced notification reasonably may be expected usefully to inform an action of the intended recipient. Based on the lifespan, the system may vacate, update, or modify an enhanced notification provided to the intended recipient but not accessed during the lifespan.

For example, the system may provide a plurality of instances of an enhanced notification to the intended recipient based on the lifespan. The system then may sense that an instance of the enhanced notification has been accessed by the intended recipient. In response, the system may vacate or modify other instances of the enhanced notification not yet accessed by the intended recipient.

The system also may include a notification archive to store enhanced notifications (e.g., delivered notifications and/or notifications for which delivery was attempted) and to record historical information related to at least one of the enhanced notifications.

These general and specific aspects may be implemented using a method, a system, or a computer program, or any combination of systems, methods, and computer programs.

Other features will be apparent from the description, the drawings, and the claims.

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic diagram of an electronic communication system capable of reconfiguring an electronic message to effect an enhanced notification.

FIG. 2 is a flow diagram of a process implementable by the electronic communication system of FIG. 1.

FIG. 3 is a schematic diagram of a system to reconfigure an electronic message to effect an enhanced notification.

FIGS. **4-6** illustrate an exemplary data structure that may be associated with enhanced notifications achieved using the system of FIG. **3**.

FIGS. 7-9 are flow diagrams illustrating an exemplary process implementable by the system of FIG. 3.

FIG. 10 illustrates an exemplary enhanced notification provided to a user at a mobile device.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

A message enhancement service enables a provider of enhanced notifications (e.g., notifications having a cascaded

delivery or an associated lifespan) to reconfigure an electronic message from a business or other source into an enhanced notification for the intended recipient. By way of illustration, certain businesses generate emails to notify their customers, e.g., an online retailer may send a customer an 5 email to alert the customer that ordered merchandise is available. A notification provider may transform that business' primitive email notification into enhanced notifications (e.g. an alert notification deliverable in various forms to various types of clients). The notification provider may or may not partner with the business that generates the notification emails. In any event, a partner business can leverage the infrastructure of the notification provider to deliver more potent services to its own customers. Moreover, the notification provider independently may provide full-functioned 15 notifications intelligently determined based on emails or other electronic messages received by the intended recipient.

FIG. 1 shows a generalized system 100 that reconfigures an electronic message directed to intended recipient 105 and provides an enhanced notification based on the electronic 20 message at one or more candidate delivery mechanisms 110. The candidate delivery mechanisms 110 generally may include any device, system, and/or piece of code that relies on another service to perform an operation. The candidate delivery mechanisms 110 may include, for example, a fixed or 25 mobile communication device, whether wired or wireless, and/or a software application, such as, for example, a messaging application or a browser. The candidate delivery mechanisms 110 also may include any protocols (i.e., standards, formats, conventions, rules, and structures) or delivery 30 channels A_1 - A_N appropriate for corresponding devices or applications of the candidate delivery mechanisms 110. The protocols or delivery channels A_1 - A_N may include, for example, one or more other systems, such as for example, one or more wired networks and/or one or more wireless net- 35

A message enhancement service 120 communicates with a message source 150 and receives the electronic message directed to the intended recipient 105. The message enhancement service 120 includes an enhancement engine 125, a 40 matching engine 130, a definition store 135, and user information 140.

The enhancement engine 125 may be configured to reconfigure the electronic message to the enhanced notification based on interaction with the matching engine 130, the definition store 135, and the user information 140. The matching engine 130 may compare the electronic message to a notification definition of the notification store 135, and may inform the enhancement engine 125 if a correspondence exists. If the electronic message corresponds to a notification definition of 50 the definition store 135, the enhancement engine 125 may access the user information 140 to determine whether the intended recipient 105 is subscribed to the notification. If the intended recipient 105 is subscribed, the enhancement engine 125 uses information of the definition store 135 to reconfigure 55 the electronic message to the enhanced notification. The enhancement engine 125 provides the enhanced notification to the intended recipient 105 at one or more of the candidate delivery mechanisms 110. In any event, the definition store 135 and the user information 140 may be used for either of 60 determining whether to reconfigure, or determining how to reconfigure the electronic message. Moreover, certain implementations may segregate, physically or conceptually, the functions of determining whether to reconfigure and of determining how to reconfigure the electronic message.

The enhancement engine 125 provides the enhanced notification based on an applicable notification definition within

4

the definition store 135 and/or applicable user information 140. An applicable notification definition and/or applicable user information may be identified and accessed based on the identify of the message source or intended recipient or based on attributes of the message. The notification definition may include a delivery definition, for example, a delivery precedence, a hierarchical delivery rule, or any other logical rule or definition that may be used to control delivery of the enhanced notification. The user information, on the other hand, may include information indicating an online presence of the intended recipient 105. The enhancement engine 125 may be configured to determine one or more preferred delivery options based on the delivery definition, the presence information, and/or other information. That is, in general, the enhancement engine 125 may select from among the candidate delivery mechanisms 110 an actual delivery mechanism that is expected to provide the message to the intended recipient 105 without significant delay.

The notification definition also may include a notification lifespan. The lifespan may represent a period during which the enhanced notification is expected to be relevant to the intended recipient 105. Delivery of the notification based on the lifespan enhances the likelihood that the enhanced notification will be provided to the intended recipient 105 at a time at which the notification will be useful. The lifespan may be used to avoid untimely delivery of the notification that may cause the intended recipient to view the notification as not useful and/or as an annoyance. That is, in general, the enhancement engine 125 provides the enhanced notification to the intended recipient 105 only while the enhanced notification is expected to be relevant based on the notification lifespan included in an applicable notification definition.

The message source 150 typically may include any source of an electronic message. The message source 150 may employ one or more protocols to transfer information internally or to communicate the electronic message to the message enhancement service 120.

Both the message enhancement service 120 and the message source 150 further may include various mechanisms for delivering voice and/or non-voice data. The various mechanisms may include, for example, any applications, protocols, devices, or networks used to facilitate communication of electronic data. Both the message enhancement service 120 and the message source 150 also may include or be included in a general-purpose or a special-purpose computer, a local area network, and/or a wide area network. The response to and execution of instructions received by the message enhancement service 120, the message source 150, or any of their components (collectively the system services), may be controlled by, for example, a program, a piece of code, an instruction, a device, a computer system, or a combination thereof, for independently or collectively instructing the system services to interact and operate as described herein.

FIG. 2 illustrates a flow diagram of a process 200 implementable by, for example, the system 100 of FIG. 1 to deliver an enhanced notification to the intended recipient of the electronic message. The message source 150 communicates to the message enhancement service 120 an electronic message to be directed to the intended recipient 105 (step 205). The message enhancement service 120 may use the matching engine 130 and the notification definition 135 to determine whether the electronic message corresponds to the notification definition (step 210). If there is correspondence, the message enhancement service 120 uses the user information 140 to determine whether the intended recipient 105 is registered to receive the enhanced notification (step 215). If these conditions are not satisfied, the electronic message is not

ŕ

reconfigured and is communicated through to the intended recipient 105 (step 220). Otherwise, the message enhancement service 220 reconfigures the electronic message to an enhanced notification and provides the enhanced notification to the intended recipient 105 according to the notification 5 definition (step 225).

5

Referring to FIG. 3, a generalized notification system 300 reconfigures an electronic message intended for user 305 to provide user 305 with an enhanced notification at one or more candidate delivery mechanisms 310. The notification 10 includes enhanced features, such as, for example, cascaded delivery, an associated lifespan, or an enhanced presentation. The notification system 300 provides the notification to the delivery mechanisms 310 using a network 315 and a message enhancement service 320. Exemplary components of the 15 notification system 300 are described in greater detail below.

The delivery mechanisms 310 generally are analogous to the candidate delivery mechanisms 110 of FIG. 1. Each delivery mechanism 310 may include any device, system, and/or piece of code that relies on another service to perform an 20 operation. For example, a delivery mechanism 310 may include a device such as a telephone 310a, a pen-enabled computer 310b, a personal digital assistant (PDA) or mobile telephone 310c, a notebook computer 310d, and/or a desktop computer 310e. The delivery mechanisms 310 also or alter- 25 natively may include, for example, a Web browser, an email client, a synchronization client (e.g., a calendar synchronization client, or a task list synchronization client), an instant messaging (IM) client, a short message service (SMS) client, a business productivity application (e.g., a word processing 30 program, or a spreadsheet program), and/or an operating system or operating system kernel residing on a device. The delivery mechanisms 310 may be arranged to operate within or in concert with one or more other systems, such as, for example, one or more LANs (local area networks) and/or one 35 or more WANs (wide area networks).

Each of the delivery mechanisms 310 may be accessible to the message enhancement service 320, and the user 305 may access the message enhancement service 320 or another online service using one or more of the delivery mechanisms 40 310. For example, the user 305 may use the notebook computer 310d to access the message enhancement service 320.

A delivery mechanism 310 may format an enhanced notification received from message enhancement service 320 using a standard protocol, such as, for example, the standard 45 generalized markup language (SGML), the extensible markup language (XML), the hypertext markup language (HTML), the extensible hypertext markup language (XHTML), the compact hypertext markup language (CHTML), the virtual reality markup language (VRML), the wireless markup language (WML), the voice extensible markup language (VXML), a document object model (DOM), or the dynamic hypertext markup language (DHTML). Properly formatted, the enhanced notification may enable the user 305 to interact with or to respond to the 55 enhanced notification.

The notification system 300 also includes a message source 350. The message source 350 typically includes different services and sources of electronic messages, such as, for example, a third party service, an email, a discussion group, a 60 chat room, a news service, a broker service, a banking service, a shopping service, a weather service, the World Wide Web, or an Internet service.

The message source 350 may provide an electronic message as a simple email intended to notify the user 305 of an 65 event or of information. Numerous examples of possible subject matter exist, but, for brevity, only a few of those examples

6

are described here. The electronic message may be based, for example, on a promotional advertisement, an account balance, a portfolio status, a credit status, an online status, information that an order and/or a service is complete, or a message regarding confirmation, cancellation, and/or rescheduling of an appointment. Other examples include, but are not limited to, a weather forecast and/or adverse weather conditions of a particular geographic region; a particular date, holiday and/or other special occasion; an online status of another user; a change to a predetermined web page; or entertainment programming and/or ticket information.

The message source **350** may employ one or more protocols (i.e., standards, formats, conventions, rules, and structures) to transfer information internally or to deliver electronic messages to a user. Protocols employed by the information service **330** may include, for example, the Internet protocol (IP), the transfer connection protocol (TCP), the hypertext transfer protocol (HTTP), the file transfer protocol (FTP), the user datagram protocol (UDP), the layer two tunneling protocol (L2TP) and/or the simple mail transfer protocol (SMTP).

In general, the message enhancement service 320 receives an electronic message from the message source 350 and reconfigures the electronic message to an enhanced notification. Reconfiguring the electronic message may include leaving the source electronic message unchanged while providing additional or alternative delivery options or other features. Reconfiguring the electronic message also may include providing a completely different message that is based on or references the source message. More particularly, the message enhancement service 320 monitors for electronic messages that match enhanced notifications to which the intended recipient is subscribed. The message enhancement service 320 may present the intended recipient with a subscription request when an electronic message matches an enhanced notification to which the intended recipient is not subscribed. If the user 305 desires, the user 305 may use the subscription request to instigate subscription to the enhanced notification, for example, by selecting the subscription request and receiving options responsive thereto.

When an electronic message is reconfigured to an enhanced notification, the message enhancement service 320 may provide the notification to the user 305 based on the lifespan, delivery precedence, or user information. For example, the message enhancement service 320 may deliver the enhanced notification to an email account of the user 305 based on a preference indicated when the user subscribed to the notification. Later, the message enhancement service 320 may detect that the user 305 is online during the lifespan period and may deliver an associated notification to the user 305 using a protocol and/or communication method appropriate for the user 305, for example, a pop-up window. If the user 305 first accesses the notification delivered to the email account (e.g., because the user 305 was reading email when the pop-up window was delivered), the associated redundant pop-up window notification may be automatically vacated, updated or removed. Alternatively, the email alert may be vacated, removed or updated in response to access by the user to the pop-up window. Similarly, messages of other types can be vacated, removed or updated based on user interaction with different messages or with other message types. If the user 305 fails to access a notification during the lifespan period, that notification and/or any related notification may be vacated, removed or updated. In this manner, the message enhancement service 320 may provide the notification to the user 305 with a minimum of delay while not burdening the user with redundant notifications.

The message enhancement service 320 may provide notifications in a certain order based on a delivery urgency. The delivery urgency may be related to notification subject matter and/or time sensitivity (e.g., as measured by lifespan). For example, a delivery urgency may define that a notification for 5 a severe weather alert has a higher delivery urgency than a notification of a baseball score. Similarly, the delivery urgency may define that a notification with only thirty minutes of remaining lifespan has a higher urgency than a notification having 36 hours of remaining lifespan.

The message enhancement service 320 includes an enhancement engine 325 that receives the electronic message from the message source 350 and reconfigures the electronic message to the enhanced notification. The enhancement engine 325, alone or in conjunction with other services, may 15 perform sorting, prioritizing, or other types of organizational processing on the enhanced notification so that the notification is delivered appropriately to the user 305.

More specifically, the enhancement engine 325 reconfigures the electronic message to the enhanced notification 20 based on interaction with the matching engine 330, the notification definitions 335, and the user information 340. The matching engine 330 may compare the electronic message to the notification definitions 335, and may inform the enhancement engine 325 if a correspondence exists. If the electronic 25 message corresponds to a notification definition 335, the enhancement engine 325 accesses the user information 340 to determine whether the user 305 is subscribed to the notification. If the user 305 is subscribed, the enhancement engine 325 uses the notification definition 335 to reconfigure the 30 electronic message to the enhanced notification. The enhancement engine 325 provides the enhanced notification to the user 305 at one or more of the candidate delivery mechanisms 310 (e.g., using a cascaded delivery, or a simultaneous broadcast delivery to a plurality of the delivery 35 mechanisms 310). In general, the enhancement engine 325 uses the user information 340 and the notification definitions 335 to select from among the candidate delivery mechanisms 310 one or more actual delivery mechanisms that are expected to provide the message to the user 305 without 40 significant delay and/or with appropriate emphasis and for-

The notification definitions 335 may include system definitions 337 and user preferences 339. The system definitions 337 may be generated by the system or by an administrator of 45 the system. The system definitions 337 may include, for example, definitions of classes of notifications, and/or definitions of each available notification. More specifically, the system definitions 337 may define, in whole, or in pail, one or more conditions to be satisfied by the source and/or content of 50 an electronic message before the corresponding enhanced notification will be provided—contingent upon subscription by the user 105. For example, before an electronic message will be reconfigured, the system definitions 337 may require that the electronic message derive from a specific source 55 and/or include specific content.

The system definitions 337 also may define the range of functionality of the enhanced notifications and, hence, the scope of accommodation to user preferences (e.g., a user preference for a function not defined for the system cannot be 60 accommodated). The system definitions also may provide a cascaded delivery definition and/or a lifespan (e.g., by forecasting a time period during which the notification is expected to be useful to a user). The system definitions 337 may make a variety of delivery and/or presentation methods available 65 for selection by the user 305. For example, the system definitions 337 may enable user 305 to select to receive the

8

notification as an instant message, an icon, a pop-up window, a video, a flashing indicator, and/or an audio or tactile alarm. The system definitions 337 also may provide for the enhanced notification to be provided to the user 305 conditioned on presence (online versus offline), and/or conditioned on use by the user 305 or intended delivery to a particular device or device type, for example, a wireless device (e.g., a mobile phone, a PDA, or a pager), a standard telephone, voicemail, and/or email if the user 305 so desires. The system definitions 337 may provide the user with flexibility to be notified in a manner that the user anticipates will most likely provide the notification to the user without significant delay.

The user preferences 339 generally include preferences of the user 305 regarding optional or selectable aspects of the system definitions 337. For example, the user preferences 339 may include a delivery preference of the user 305, a presentation preference of the user 305, or a lifespan preference of the user. The user preferences 339 may also include information to define, in finer detail, the conditions to be satisfied by the source and/or content of an electronic message before the corresponding enhanced notification will be provided.

For example, the user 305 may register for an auction alert. The subscriber engine 342 may record that the user 305 has registered for the auction alert. At registration, the user 305 also may provide notification preferences that will be added to the preferences 339 of the notification definitions 335. The user 305 may indicate that the enhanced auction notification will reconfigure simple email alerts sent to the user 305 by eBay® that relate to online auctions in which the user 305 participates. The auction notification will be delivered according to the cascaded delivery definition but will not be delivered after passage of the lifespan. Moreover, even if delivered, the auction notification may be deleted automatically if the user 305 does not access the auction notification (e.g., by viewing an associated pop-up window, and/or by accessing an associated email or voicemail message) prior to passage of the lifespan.

As another example, the user 305 may subscribe to reconfigure birthday email reminders to enhanced notifications. The message source 350 may provide the email reminders one week prior to the specified birthday and, again, the day before. Having properly subscribed, the email reminders are reconfigured to notifications having enhanced functionality. For example, the subsequent enhanced notification may replace the initial notification if the initial notification has not been accessed already.

Moreover, the user 305 may consider two weeks an upper bound for an acceptable belated birthday wish. As a result, the user 305 may configure the enhanced notifications with appropriate lifetimes. Using the lifespans, the enhanced notifications of the birthday may be removed automatically two weeks following the birthday if the user 305 has not accessed the notifications by that time.

In yet another example, the user 305 may subscribe to reconfigure marketing or sales messages (e.g., SPAM) to enhanced notifications. The enhanced notifications may have an associated short duration lifespan of hours or, perhaps, of a day. The enhanced notifications may provide the user 305 with the opportunity to examine the marketing or sales messages received for subject matter of interest. At the same time, the short lifespan relieves the user 305 of the need to attend to the sales or marketing notifications because each corresponding enhanced notification automatically will be deleted as its short lifespan is expended.

The user information 340 may include a subscriber engine 342 and presence information 344. The subscriber engine 342 may include a record of the enhanced notifications that the

user 305 has subscribed to receive. Upon registration to receive an enhanced notification, the user 305 may inform the message enhancement service 320 of preferences regarding that enhanced notification. The message enhancement service 320 may include those preferences in the preferences 5339 of the notification definitions 335.

The presence information 344 may include, for example, information indicating an online presence of the user 305 (e.g., information indicating that the user 305 is browsing the web, the user 305 has an active instant messaging session, the user 305 is online using a television, the user 305 is online using a game console, the user 305 is online using a networked radio, or the user 305 currently is active in a chat room discussion). The presence information 344 also may include information indicating a presence of the user at a particular 15 device or a physical presence of the user. The physical presence information may be determined, for example, from a global positioning system associated with the user 305 and may be used to select a delivery mechanism within a predefined range of the intended recipient's physical presence.

The network 315 typically allows direct or indirect communication between the delivery mechanism 310 and the online service 320, irrespective of physical or logical separation. Examples of a network 315 include the Internet, the World Wide Web, WANs, LANs, analog or digital wired and 25 wireless telephone networks (e.g., PSTN, ISDN or xDSL), radio, television, cable, satellite, and/or any other delivery mechanism for carrying data. The network 315 may be secured or unsecured.

Each of the delivery mechanism 310, the network 315, and 30 the message enhancement service 320 may further include various mechanisms for delivering voice and/or non-voice data, such as, for example, the short message service, the wireless application protocol (WAP), the transport connection protocol (TCP), the Internet protocol (IP), the World 35 Wide Web, one or more local area networks, and/or one or more wide area networks. The delivery mechanism 310, the network 315, and the message enhancement service 320 also may include analog or digital wired and wireless telephone networks, such as, for example, public switched telephone 40 networks (PSTN), integrated services digital networks (ISDN), various types of digital subscriber lines (xDSL), advance mobile telephone service (AMPS), global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), radio, 45 cable, satellite, and/or other delivery mechanisms for carrying voice or non-voice data.

The message enhancement service 320 also may include a notification archive 345. The notification archive 345 may be used to retain versions of each enhanced notification actually 50 provided or for which delivery was attempted but failed. The notification archive 345 also may record with respect to each notification the device or devices to which the notification was delivered or for which delivery failed, and the dates and times of those occurrences. In instances of failed delivery, the 55 notification archive 345 may store information indicative of the cause of failed delivery, such as, for example, that a mailbox full message was received in association with an attempted email notification. The notification archive 345 may enable users, for example, to access a history of notifi- 60 cations for which they were an intended recipient (e.g., notifications of the last week or month) and/or to access archived versions of any past notification provided to them.

The notification archive 345 may include one or more databases that may reside at any appropriate location (e.g., 65 local location, remote location, third party location), and also may reside on any appropriate storage medium 180 such as,

10

for example, a magnetic disc array, or an optical disk array. These databases may be included in a single physical or logical structure, or they may be physically or logically distinct.

One or more other services may be included in the components of notification system 300 and/or these components (hereinafter the system services) may be included as part of one or more other services. For example, the system services may include or be included in a general-purpose or a special-purpose computer (e.g., a personal computer, a PDA, or a device specifically programmed to perform certain tasks), a database, a local area network, and/or a wide area network. In any event, the response to and execution of instructions received by any or all of the system services may be controlled by, for example, a program, a piece of code, an instruction, a device, a computer system, or a combination thereof, for independently or collectively instructing the services to interact and operate as described herein.

FIG. 4. illustrates a notification data structure 400 that may be used by the message enhancement service 320 of FIG. 3 to maintain the notification definitions 335. The notification data structure 400 is structured as a hierarchical tree and provides a logical representation of the notification definitions 335. For example, a highest hierarchical level of the notification data structure 400 includes a global-level 405 having a notification global defaults node 406 representative of a generalized notification.

A lower type-level 410 of the notification data structure 400 further defines notifications according to notification types. For example, as shown, the notifications may include an auction notification type 413, a marketing notification type 415, a meeting notification type 417, and a to-do notification type 419, among others. Still further, the notification data structure 400 includes an instantiation-level 420 to identify and define activated instantiations of each notification type (e.g., the auction notification type 413). For example, the auction notification type 413 may include instantiations of that notification activated by user subscription (e.g., auction notification #1 421 through auction notification #n 422). Other instantiations include marketing notification #1 423 through marketing notification #n 424, meeting notification #1 425 through meeting notification #n 426, and to-do notification #1 427 through to-do notification #n 428.

Each level of the notification data structure 400 may include both system definition information (e.g., system definitions 337) and user preference information (e.g., preferences 339) for the notification definitions 335. For example, the notifications global-level 405 may include system-defined delivery information and user-defined delivery information. To the extent that there is contradiction, the user preference information may preempt the system definition information for a given hierarchical level of the notification data structure 400. Moreover, each node of the notification data structure 400 may be configured to inherit notification definitions 335 from a node of a higher hierarchical level from which the node depends. Stated differently, notification definitions 335 may pass from a higher hierarchical level of the notification data structure 400 to a lower level to provide information missing at the lower level.

For example, the notifications global node 406 includes a global delivery definition 407. Since the auction notification type 413 lacks its own delivery definition, the auction notification type 413 inherits the global delivery definition 407 from the notification global defaults 406. However, auction notification #1 421, an instantiation of the auction notification type 413, includes a local delivery definition 429. To the extent that the local delivery definition 429 is complete, that

definition overrides the global delivery definition **406** that it would inherit otherwise. On the other hand, auction notification #n **422**, a further instantiation of the auction notification type **413**, does not include a delivery definition and inherits the global delivery definition **407** from the auction notification type **413**.

FIGS. 5 and 6 illustrate an implementation of the notification data structure 400 that includes data structures for structuring the system definitions 337 and the user preferences 339, respectively. The exemplary data structures of FIGS. 5 and 6 are similar and parallel each other.

Referring to FIG. 5, the notification data structure 400 includes system definitions 337. The system definitions 337 include global definitions 510 and type definitions 550. The $_{15}$ global definitions 510, for example, provide that a notification may include a lifespan. As indicated by the null value, however, the global definitions 510 do not provide a global default lifespan value. The global definitions 510 also indicate a global delivery precedence that controls whether and/or when 20 the enhancement engine 325 provides an enhanced notification to a particular delivery mechanism. More specifically, the global definitions 510 instruct the enhancement engine 325 to select the following delivery mechanisms as delivery recipients in the order of preference shown: (1) an online device 25 **514**, if the user is online, (2) a wireless client **516**, if wireless delivery is enabled for the user, and (3) an email inbox 518a. Lastly, an email archive 518b is provided for, but is not activated as a delivery option in this configuration.

Delivery to the online device 514 is designated as "concurrent." Concurrent delivery indicates that the notification will be delivered online if the presence information 344 indicates that the user 305 currently is online, even if the notification already had been or will also be delivered to the user 305 offline. The global definitions also define notification priority 35 520 to be "not urgent," and that a "quiet time" 522 applies between 9:00 PM and 8:00 AM during which only urgent notifications are delivered to attract the immediate attention of the user 305.

Additionally, the system definitions **500** include type defi-40 nitions 550 that define, for example, an auction notification type 555, a marketing notification type 575, a meeting notification type 580, and a to-do reminder alert 585. For brevity, only the auction notification type 555 is described in detail as the other notification types are similar in most relevant 45 aspects. The auction notification type 555 defines, for example, trigger parameters 557, which, if satisfied by the electronic message, will cause the electronic message to be reconfigured to an auction notification type 555. In this case, the trigger parameters 557 require that the electronic message 50 be provided by eBay®, and that the content of the electronic message include the term "auction." The auction notification type 555 also defines a twenty-four hour lifespan 559. In addition, although it does not do so here, the auction notification type 555 may define an associated delivery precedence 55 561 and notification priority 563.

Referring to FIG. 6, the notification data structure 400 also may include a user profile with user preferences 339. Like the system definitions 337, the user preferences 339 include global preferences 610, and type preferences 650. In the illustration of FIG. 6, all of the global preferences are null valued except for wireless delivery preference 616. That preference indicates that mobile phone #1 is enabled generally to receive notifications for WillRobinson. To enable mobile phone #1 to receive notifications, WillRobinson may identify mobile 65 phone #1 as a preferred delivery mechanism and may identify contact information related to mobile phone #1, such as, for

12

example, an associated phone number (202) 997-6363. Although mobile phone #1 is enabled, no associated delivery precedence is provided.

The type preferences 650 may include preferences for various notification types for which WillRobinson has subscribed, such as, for example, the auction notification type 655, the marketing notification type 675, the meeting notification type 680, and/or the to-do notification type 685. For brevity, FIG. 6 provides detail only for the auction notification type 655. The auction notification type 655 includes type-level preferences and a single auction notification instantiation (i.e., auction notification #1 665) having associated instantiation preferences. The type preferences for the auction notification type 655 are null valued.

Nevertheless, at the instantiation level, auction notification #1 665 defines the lifespan as 6 hours, based, for example, on an expectation of the user that the auction will proceed quickly. The auction notification #1 665 also defines the following delivery precedence 671: (1) an online device (if the user is online), (2) a mobile phone #1, (3) a PDA, (4) a mobile phone #2, (5) a pager, and (6) an email inbox. Lastly, an email archive is identified to always receive notification. In addition, the auction notification #1 665 defines the notification priority 673 as "urgent," while leaving "quiet time" 674 undefined as a null value.

FIG. 7 illustrates a flow diagram of a process 700 implementable by, for example, the system of FIG. 3 to reconfigure an electronic message to an enhanced notification. Initially, the message enhancement service receives an electronic message from a message source (step 705). The enhancement engine uses the matching engine to compare the electronic message to the notification definitions including, for example, the trigger parameters. (step 710). If there is a match (step 715), the enhancement engine uses the subscriber engine to determine whether the user is subscribed to the enhanced notification that has been matched (step 725); otherwise the electronic message is not reconfigured but is passed through to the user (step 720).

If there is a match (step 715) and the user is subscribed to the enhanced notification (step 730), the enhancement engine resolves the enhanced notification (step 735). The enhanced notification is resolved based on the notification definitions, such as, for example, the system definitions and the user preferences, and the presence information (step 735). The enhancement engine provides the enhanced notification to the user at a selected delivery device, for instance, according to a delivery precedence and/or a lifespan of the enhanced notification (step 740).

If the user, however, is not subscribed to the enhanced notification (step 730), the electronic message is not reconfigured but is passed through to the user (step 745). The message enhancement service notifies the user that the enhanced notification is available (step 750), and uses the subscriber engine to provide the opportunity to the user to subscribe to the enhanced notification (step 755).

Referring to FIG. 8, an enhanced notification, in whole or in part, may be resolved (step 735 of FIG. 7) using process 800. Resolving the enhanced notification includes determining notification information from an instantiation-level user preference and/or system definition (step 805). If no gaps are identified in the notification information (step 810), the enhanced notification is formed based on the notification information (step 815). Otherwise, if gaps are identified (step 810), additional notification information is inherited from a type-level user preference and/or system definition (step 820). The supplemented notification information is evaluated for completeness again (step 825). If the supplemented noti-

fication information is complete, the enhancement engine 325 forms the enhanced notification based on that information (step 815). Otherwise, the enhancement engine 325 forms the enhanced notification (step 815) after the notification information is supplemented further through inheritance 5 based on a global-level user preference and/or system definition (step 840). The enhanced notification may be formed, for example, by converting the relevant notification information into a format or protocol required for delivery.

FIG. 9 illustrates a flow diagram of a process 900 implementable by, for example, the system of FIG. 3 to provide to the user an enhanced notification. By way of illustration, the enhanced notification may include a lifespan and a delivery precedence that seeks to notify the user first online, second at a wireless device, and third via email. Providing the enhanced notification includes determining whether the lifespan of the enhanced notification has been expended (step 905). If the lifespan is expended, the message enhancement service 320 does not provide the enhanced notification and the process is finished (step 910).

If the lifespan is not expended (step 905), then the message enhancement service 320 uses the presence information to determine whether the user 305 is online (step 915). If the user 305 is online, the message enhancement service 320 determines further whether the user 305 is away temporarily (e.g., 25 although having an established an online session, the user 305 has marked himself as "away," or the user 305 has engaged in no online activity for a predetermined period of time) (step 920). If the message enhancement service 320 determines that the user 305 is online and is not away from the online 30 delivery mechanism, the message enhancement service 320 delivers the notification to that online delivery mechanism (step 925).

If the message enhancement service 320 determines, however, that the user 305 is not online (step 915), or is away from 35 the online delivery mechanism (step 920), then the message enhancement service 320 determines again if the lifespan is expended (step 905) and continues to monitor for an online presence of the user 305 (steps 915 and 920).

Concurrently with online delivery, the message enhance- 40 ment service 320 determine whether it presently is "quiet time" for the user 305 (step 930). The message enhancement service 320 also determines whether the enhanced notification is designated as "urgent" (e.g., an enhanced notification might be marked "urgent" when the notification provides an 45 alert that a tornado has been spotted near the user's home address) (step 935). Where the message enhancement service 320 determines that it is not "quiet time" or that the notification is "urgent" (i.e., "urgency" overrides "quiet time"), the message enhancement service 320 determines whether wire- 50 less notification is available for the user 305 (e.g., through notification to a mobile phone, a PDA, a pager) (step 940). If wireless notification is available, the message enhancement service 320 determines a wireless delivery mechanism at which the user 305 prefers to receive the notification (step 55 945) and delivers the notification to that wireless delivery mechanism (step 950).

However, should the message enhancement service 320 determine that it is "quiet time" (step 930) and that the notification is not "urgent" (step 935), or that wireless notification 60 is unavailable (step 940), the message enhancement service 320 delivers the notification to an email inbox (step 955). Irrespective of delivery or lack of delivery to other delivery mechanisms, the message enhancement service 320 also delivers the notification to an email archive (step 960).

Whether the enhanced notification is provided online, to a wireless device, or to an email inbox, the lifespan of the 14

enhanced notification is monitored until the lifespan is expended or the user 305 accesses the notification (steps 965 and 970). If the lifespan of the notification becomes expended before the user accesses the notification (step 965), the notification may be vacated (e.g., the notification may be deleted from a notification delivery mechanism to which the notification was delivered) (step 975) and the delivery process may be concluded (step 910). Otherwise, if the notification is accessed by the user before the notification lifespan becomes expended (step 970), the content of the notification is provided to the user (step 980), and the delivery process may be concluded (step 910).

Alternatively, or in addition, after the user accesses the provided notification (step 970), the message enhancement service 320 may cause to be vacated redundant instances of the same notification that were delivered to other delivery mechanisms. For example, those redundant instances of the notification might be vacated as the lifespan period becomes expended. In another implementation, accessing of the enhanced notification by the user 305 may trigger the message enhancement service 320 to cause the redundant instances of the notification to be vacated. For example, access by the user of an online notification may cause the message enhancement service to transmit a secured (e.g., authenticated and encrypted) recall message to an email inbox to which a now redundant notification concurrently was delivered. The secured recall message may act to remove the redundant notification from the inbox before the redundant notification becomes a source of inconvenience to the user.

FIG. 10 illustrates an auction notification that may be delivered to a PDA or mobile phone of a user. The PDA or mobile phone notifies the user "Alert! Will Robinson. Auction 53ZX793 for a 1957 Chevy Bel Aire closes in one hour. At the time of this notice, you have the high bid." In general, the auction notification may include any type of instant message, pop-up window, icon, and or audible or tactile alarm capable of gaining the attention of the user. The auction notification may present information derived from the electronic message of the message source. In addition, or in the alternative, the auction notification may include the contents of the electronic message. In another aspect, the auction notification may include an edit button for editing the presentation of the notification, and a respond/more information button for accessing the auction using the online service to update a bid and/or to obtain more detailed information regarding the auction.

The following scenario serves to illustrate exemplary implementations involving the processes and systems described.

A business may generate notification content but may partner with a notification provider for delivery of that content reconfigured according to parameters provided by the business. For example, a partner business may agree to notify a customer of customer account information each month. The business may communicate a message to the notification provider that includes text appropriate for such a reminder. The business also communicates a configuration instruction that is used by the notification provider to effect the desired message reconfiguration. The configuration instruction may be included as part of the original message text (to be recognized and removed by the notification provider during reconfiguration), in a header, or in an out-of-band communication with the notification provider.

The business also may enable the notification provider to supplement the notification content in an appropriate manner. For example, the configuration instruction may include schedule information indicating requested timing for the

user's monthly reminder and access information for authenticated access to the user's account. In receipt of this information, the notification provider establishes a notification to be delivered to the user on the monthly schedule and based on the provided text and information to be gleaned through 5 access to the user's account. Thereafter, when the monthly notification is triggered, access to the account information is obtained, an attachment is generated based on a screenshot or other representation of the account info, and a notification is delivered that integrates the notification text and the account 10 information attachment.

Other implementations are within the scope of the following claims.

What is claimed is:

- 1. A system comprising:
- at least one processor; and
- at least one non-transitory computer readable storage medium storing instructions thereon that, when executed by the at least one processor, cause the system

receive an electronic message for an intended recipient; access, upon receipt of the electronic message, one or more logical rules;

send, based on the one or more logical rules, a first notification of the electronic message to a first deliv- 25 ery mechanism and a second notification of the electronic message to a second delivery mechanism;

detect that the intended recipient accessed the first notification on the first delivery mechanism; and

remove the second notification from the second delivery 30 mechanism based on detecting the intended recipient accessed the first notification on the first delivery mechanism;

wherein, the one or more logical rules dictate the first delivery mechanism and the second delivery mecha- 35 nism for the electronic message based on one or more attributes of the electronic message, one or more attributes of a sender of the electronic message, or one or more attributes of the intended recipient of the electronic message.

- 2. The system as recited in claim 1, wherein the one or more attributes of the intended recipient of the electronic message comprise whether the intended recipient is online or offline.
- 3. The system as recited in claim 2, wherein the one or more logical rules cause the system to send the first notification to 45 the first delivery mechanism based on the intended recipient being online on the first delivery mechanism.
- 4. The system as recited in claim 3, wherein the first delivery mechanism comprises a web browser.
- 5. The system as recited in claim 3, wherein the first notification comprises an icon.
- 6. The system as recited in claim 3, wherein the first notification comprises a pop-up window.
- 7. The system as recited in claim 3, wherein the one or more logical rules cause the system to send the second notification 55 to the second delivery mechanism based on the intended recipient being online on the second delivery mechanism.
- 8. The system as recited in claim 3, wherein the second delivery mechanism comprises a messaging application.
- 9. The system as recited in claim 3, wherein the second 60 delivery mechanism comprises a mobile telephone.
- 10. The system as recited in claim 1, wherein the one or more logical rules cause the system to send the electronic message unchanged.
- 11. The system as recited in claim 1, wherein the one or 65 more logical rules cause the system to reference content of the electronic message in the first notification.

16

- 12. The system as recited 11, wherein the first notification comprises an icon.
- 13. The system as recited in claim 12, wherein the one or more logical rules cause the system to send the second notification in the format of an audio alert.
- 14. The system as recited in claim 11, wherein the first notification comprises a pop-up window.
- 15. The system as recited in claim 1, wherein the one or more attributes of the electronic message comprise a software application that originated the electronic message.
- 16. The system as recited in claim 15, wherein the one or more logical rules cause the system to send the first notification to the first delivery mechanism and the second notification to the second delivery mechanism based on the software application.
- 17. The system as recited in claim 16, wherein the first delivery mechanism comprises a desktop computer.
- **18**. The system as recited in claim **17**, wherein the first 20 notification comprises an icon.
 - 19. The system as recited in claim 17, wherein the first notification comprises a pop-up window.
 - 20. The system as recited in claim 16, wherein the one or more logical rules cause the system to send the first notification to the first delivery mechanism and the second notification to the second delivery mechanism based on the type of electronic message.
 - 21. The system as recited in claim 20, wherein the first delivery mechanism comprises a computer.
 - 22. The system as recited in claim 20, wherein the second delivery mechanism comprises a mobile telephone.
 - 23. A system comprising:
 - at least one processor; and

40

- at least one non-transitory computer readable storage medium storing instructions thereon that, when executed by the at least one processor, cause the system
 - identify an electronic message and an intended recipient of the electronic message;

access one or more logical rules;

- send a first notification to a first delivery mechanism and a second notification to a second delivery mechanism based on the one or more logical rules;
- detecting that the intended recipient accessed the first notification on the first delivery mechanism; and
- remove the second notification from the second delivery mechanism based on detecting the intended recipient accessed the first notification on the first delivery mechanism;
- wherein, the one or more logical rules dictate whether to send the one or more notifications for the electronic message based on one or more attributes of the intended recipient of the electronic message and one or more preferences set by the intended recipient.
- 24. The system as recited in claim 23, wherein the one or more attributes of the intended recipient comprise presence information of the intended recipient.
- 25. The system as recited in claim 24, wherein the presence information comprises at least one of an online presence, a device presence, or a physical presence.
- 26. The system as recited in claim 25, wherein the one or more logical rules cause the system to send the first notification to the first delivery mechanism based on the intended recipient having an online presence.
- 27. The system as recited in claim 26, wherein the one or more logical rules cause the system to send the second notification to the second delivery mechanism based on the

intended recipient having a device presence on a device associated with the intended recipient.

- **28**. The system as recited in claim **27**, wherein the one or more logical rules cause the system to send the first notification to the first delivery mechanism and the second notification to the second delivery mechanism in different notification formats.
- 29. The system as recited in claim 28, wherein the device is a mobile device.
- **30**. The system as recited in claim **29**, wherein the mobile device is a mobile phone.
- 31. The system as recited in claim 29, wherein the second delivery mechanism is a messaging application.
- 32. The system as recited in claim 29, wherein the first $_{15}$ delivery mechanism is a web browser.
- 33. The system as recited in claim 32, wherein the first notification comprises an icon.
- **34**. The system as recited in claim **33**, wherein the first notification additionally comprises an audible alert.
- **35**. The system as recited in claim **32**, wherein the first notification comprises a pop-up window.
- **36**. The system as recited in claim **23**, wherein the one or more preferences set by the intended recipient require one or more conditions to be satisfied by the content of the electronic ²⁵ message prior to sending the first notification and the second notification.
- **37**. The system as recited in claim **23**, wherein the one or more preferences set by the intended recipient specify to send the first notification and the second notification as one or more of icons or pop-up windows.
 - 38. A method comprising:

identifying, using at least one processor, an electronic message and an intended recipient of the electronic message; sending a first notification of the electronic message to a first delivery mechanism and a second notification of the electronic message to a second delivery mechanism;

detecting that the intended recipient accessed the first notification on the first delivery mechanism; and

removing the second notification from the second delivery mechanism based on detecting the intended recipient accessed the first notification on the first delivery mechanism. 18

- 39. The method as recited in claim 38, further comprising: determining, using the at least one processor, at least one of the first delivery mechanism or the second delivery mechanism based on one or more attributes of the intended recipient of the electronic message and one or more preferences set by the intended recipient; and
- wherein the one or more one or more attributes of the intended recipient comprise presence information of the intended recipient.
- **40**. The method as recited in claim **39**, wherein the presence information comprises at least one of an online presence, a device presence, or a physical presence.
- 41. The method as recited in claim 40, wherein sending the first notification to the first delivery mechanism is based on the intended recipient having an online presence.
- **42**. The method as recited in claim **41**, wherein sending the second notification to the second delivery mechanism is based on the intended recipient having a device presence on a device associated with the intended recipient.
- 43. The method as recited in claim 42, further comprising sending the first notification to the first delivery mechanism and the second notification to the second delivery mechanism in different notification formats.
 - **44**. The method as recited in claim **43**, wherein the device is a mobile device.
 - **45**. The method as recited in claim **44**, wherein the mobile device is a mobile phone.
 - **46**. The method as recited in claim **44**, wherein the second delivery mechanism is a messaging application.
 - 47. The method as recited in claim 46, wherein the second notification comprises an icon.
 - **48**. The method as recited in claim **47**, wherein the second notification additionally comprises an audible alert.
 - **49**. The method as recited in claim **46**, wherein the second notification comprises a pop-up window.
 - **50**. The method as recited in claim **39**, wherein the one or more preferences set by the intended recipient require one or more conditions to be satisfied by the content of the electronic message prior to sending the first notification and the second notification.
 - **51**. The method as recited in claim **39**, wherein the one or more preferences set by the intended recipient specify to deliver the first notification as one or more of icons or pop-up windows.

* * * * *